Patents by Inventor Wei Zhuang

Wei Zhuang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040121074
    Abstract: An MOCVD process is provided for forming metal-containing films having the general formula M′xM″(1−x)MyOz, wherein M′ is a metal selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Y, Sc, Yb, Lu, and Gd; M″ is a metal selected from the group consisting of Mg, Ca, Sr, Ba, Pb, Zn, and Cd; M is a metal selected from the group consisting of Mn, Ce, V, Fe, Co, Nb, Ta, Cr, Mo, W, Zr, Hf and Ni; x has a value from 0 to 1; y has a value of 0, 1 or 2; and z has an integer value of 1 through 7. The MOCVD process uses precursors selected from alkoxide precursors, &bgr;-diketonate precursors, and metal carbonyl precursors in combination to produce metal-containing films, including resistive memory materials.
    Type: Application
    Filed: December 20, 2002
    Publication date: June 24, 2004
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Wei-Wei Zhuang, Sheng Teng Hsu, Wei Pan
  • Publication number: 20040108528
    Abstract: Resistive cross-point memory devices are provided, along with methods of manufacture and use. The memory devices are comprised by an active layer of resistive memory material interposed between upper electrodes and lower electrodes. A bit region located within the resistive memory material at the cross-point of an upper electrode and a lower electrode has a resistivity that can change through a range of values in response to application of one, or more, voltage pulses. Voltage pulses may be used to increase the resistivity of the bit region, decrease the resistivity of the bit region, or determine the resistivity of the bit region. A diode is formed between at the interface between the resistive memory material and the lower electrodes, which may be formed as doped regions. The resistive cross-point memory device is formed by doping lines within a substrate one polarity, and then doping regions of the lines the opposite polarity to form diodes.
    Type: Application
    Filed: March 17, 2003
    Publication date: June 10, 2004
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Sheng Teng Hsu, Wei Pan, Wei-Wei Zhuang
  • Patent number: 6746910
    Abstract: A method of fabricating a self-aligned cross-point memory array includes preparing a substrate, including forming any supporting electronic structures; forming a p-well area on the substrate; implanting ions to form a deep N+ region; implanting ions to form a shallow P+ region on the N+ region to form a P+/N junction; depositing a barrier metal layer on the P+ region; depositing a bottom electrode layer on the barrier metal layer; depositing a sacrificial layer or silicon nitride layer on the bottom electrode layer; patterning and etching the structure to remove portions of the sacrificial layer, the bottom electrode layer, the barrier metal layer, the P+ region and the N+ region to form a trench; depositing oxide to fill the trench; patterning and etching the sacrificial layer; depositing a PCMO layer which is self-aligned with the remaining bottom electrode layer; depositing a top electrode layer, patterning and etching the top electrode layer, and completing the memory ar
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: June 8, 2004
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Sheng Teng Hsu, Wei Pan, Wei-Wei Zhuang
  • Publication number: 20040095689
    Abstract: A solid-state inductor and a method for forming a solid-state inductor are provided. The method comprises: forming a bottom electrode; forming a colossal magnetoresistance (CMR) thin film overlying the bottom electrode; forming a top electrode overlying the CMR thin film; applying an electrical field treatment to the CMR thin film in the range of 0.4 to 1 megavolts per centimeter (MV/cm) with a pulse width in the range of 100 nanoseconds (ns) to 1 millisecond (ms); in response to the electrical field treatment, converting the CMR thin film into a CMR thin film inductor; applying a bias voltage between the top and bottom electrodes; and, in response to the applied bias voltage, creating an inductance between the top and bottom electrodes. When the applied bias voltage is varied, the inductance varies in response.
    Type: Application
    Filed: November 10, 2003
    Publication date: May 20, 2004
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Wei Pan, Sheng Teng Hsu, Wei-Wei Zhuang
  • Publication number: 20040063274
    Abstract: A method of fabricating a self-aligned cross-point memory array includes preparing a substrate, including forming any supporting electronic structures; forming a p-well area on the substrate; implanting ions to form a deep N+ region; implanting ions to form a shallow P+ region on the N+ region to form a P+/N junction; depositing a barrier metal layer on the P+ region; depositing a bottom electrode layer on the barrier metal layer; depositing a sacrificial layer or silicon nitride layer on the bottom electrode layer; patterning and etching the structure to remove portions of the sacrificial layer, the bottom electrode layer, the barrier metal layer, the P+ region and the N+ region to form a trench; depositing oxide to fill the trench; patterning and etching the sacrificial layer; depositing a PCMO layer which is self-aligned with the remaining bottom electrode layer; depositing a top electrode layer; patterning and etching the top electrode layer; and completing the memory ar
    Type: Application
    Filed: September 30, 2002
    Publication date: April 1, 2004
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Sheng Teng Hsu, Wei Pan, Wei-Wei Zhuang
  • Publication number: 20040061180
    Abstract: A drain loaded 1T1R resistive memory device and 1T1R resistive memory array are provided. The resistive memory array comprises an array of drain loaded 1T1R resistive memory device structures. Word lines are connected across transistor gates, while a resistive elements are connected between transistor gates and bit lines. The resistive element comprises a material with a resistance that is changed electrically, for example using a sequence of electric pulses. The resistive element may comprise PCMO.
    Type: Application
    Filed: June 3, 2003
    Publication date: April 1, 2004
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Sheng Teng Hsu, Wei-Wei Zhuang
  • Patent number: 6693821
    Abstract: Low cross talk resistive cross point memory devices are provided, along with methods of manufacture and use. The memory device comprises a bit formed using a perovskite material interposed at a cross point of an upper electrode and lower electrode. Each bit has a resistivity that can change through a range of values in response to application of one, or more, voltage pulses. Voltage pulses may be used to increase the resistivity of the bit, decrease the resistivity of the bit, or determine the resistivity of the bit. Memory circuits are provided to aid in the programming and read out of the bit region.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: February 17, 2004
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Sheng Teng Hsu, Wei-Wei Zhuang
  • Patent number: 6673691
    Abstract: A method of changing the resistance of a perovskite metal oxide thin film device with a resistance-change-producing pulse includes changing the resistance of the device by varying the duration of a resistance-change-producing pulse.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: January 6, 2004
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Wei-Wei Zhuang, Sheng Teng Hsu
  • Patent number: 6669870
    Abstract: A Cu(hfac) precursor with a substituted phenylethylene ligand has been provided. The substituted phenylethylene ligand includes bonds to molecules selected from the group consisting of C1 to C6 alkyl, C1 to C6 haloalkyl, C1 to C6 phenyl, H and C1 to C6 alkoxyl. One variation, the &agr;-methylstyrene ligand precursor has proved to be stable a low temperatures, and sufficiently volatile at higher temperatures. Copper deposited with this precursor has low resistivity and high adhesive characteristics. A synthesis method has been provided which produces a high yield of the above-described precursor.
    Type: Grant
    Filed: March 28, 2001
    Date of Patent: December 30, 2003
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Wei-Wei Zhuang, Tue Nguyen, Lawrence J. Charneski, David R. Evans, Sheng Teng Hsu
  • Patent number: 6664117
    Abstract: A method of forming a multi-layered, spin-coated perovskite thin film on a wafer includes preparing a perovskite precursor solution including mixing solid precursor material into acetic acid forming a mixed solution; heating the mixed solution in air for between about one hour to six hours; and filtering the solution when cooled; placing a wafer in a spin-coating mechanism; spinning the wafer at a speed of between about 500 rpm to 3500 rpm; injecting the precursor solution onto the wafer surface; baking the coated wafer at a temperature of between about 100° C. to 300° C.; annealing the coated wafer at a temperature of between about 400° C. to 650° C. in an oxygen atmosphere for between about two minutes to ten minutes; repeating the spinning, injecting, baking and annealing steps until a perovskite thin film of desired thickness is obtained; and annealing the perovskite thin film at a temperature of between about 500° C. to 750° C.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: December 16, 2003
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Wei-Wei Zhuang, Sheng Teng Hsu, Jong-Jan Lee
  • Patent number: 6660628
    Abstract: A method of forming a titanium-based barrier metal layer includes preparing a substrate, including forming IC elements on the substrate; forming a titanium-based barrier metal precursor using a solution of about 5% by volume tetrakis (methylethylamino) titanium (TMEAT) and about 95% by volume octane; and depositing a titanium-based barrier layer on the substrate by MOCVD.
    Type: Grant
    Filed: March 17, 2003
    Date of Patent: December 9, 2003
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Wei Pan, Wei-Wei Zhuang, David R. Evans, Sheng Teng Hsu
  • Publication number: 20030219534
    Abstract: A method of forming a perovskite thin film includes preparing a perovskite precursor solution; preparing a silicon substrate for deposition of a perovskite thin film, including forming a bottom electrode on the substrate; securing the substrate in a spin-coating apparatus and spinning the substrate at a predetermined spin rate; injecting a perovskite precursor solution into the spin-coating apparatus thereby coating the substrate with the perovskite precursor solution to form a coated substrate; baking the coated substrate at temperatures which increase incrementally from about 90° C. to 300° C.; and annealing the coated substrate at a temperature of between about 500° C. to 800° C. for between about five minutes to fifteen minutes.
    Type: Application
    Filed: May 21, 2002
    Publication date: November 27, 2003
    Inventors: Wei-Wei Zhuang, Sheng Teng Hsu, Wei Pan, Masayuki Tajiri
  • Patent number: 6654210
    Abstract: A solid-state inductor and a method for forming a solid-state inductor are provided. The method comprises: forming a bottom electrode; forming a colossal magnetoresistance (CMR) thin film overlying the bottom electrode; forming a top electrode overlying the CMR thin film; applying an electrical field treatment to the CMR thin film in the range of 0.4 to 1 megavolts per centimeter (MV/cm) with a pulse width in the range of 100 nanoseconds (ns) to 1 millisecond (ms); in response to the electrical field treatment, converting the CMR thin film into a CMR thin film inductor; applying a bias voltage between the top and bottom electrodes; and, in response to the applied bias voltage, creating an inductance between the top and bottom electrodes. When the applied bias voltage is varied, the inductance varies in response.
    Type: Grant
    Filed: April 22, 2002
    Date of Patent: November 25, 2003
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Wei Pan, Sheng Teng Hsu, Wei-Wei Zhuang
  • Patent number: 6649957
    Abstract: A polycrystalline memory structure is described for improving reliability and yield of devices employing polycrystalline memory materials comprising a polycrystalline memory layer, which has crystal grain boundaries forming gaps between adjacent crystallites overlying a substrate. An insulating material is located at least partially within the gaps to at least partially block the entrance to the gaps. A method of forming a polycrystalline memory structure is also described. A layer of material is deposited and annealed to form a polycrystalline memory material having gaps between adjacent crystallites. An insulating material is deposited over the polycrystalline memory material to at least partially fill the gaps, thereby blocking a portion of each gap.
    Type: Grant
    Filed: January 15, 2003
    Date of Patent: November 18, 2003
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Sheng Teng Hsu, Tingkai Li, Fengyan Zhang, Wei-Wei Zhuang
  • Publication number: 20030206481
    Abstract: Resistive cross-point memory devices are provided, along with methods of manufacture and use. The memory devices are comprised by an active layer of resistive memory material interposed between upper electrodes and lower electrodes. A bit region located within the resistive memory material at the cross-point of an upper electrode and a lower electrode has a resistivity that can change through a range of values in response to application of one, or more, voltage pulses. Voltage pulses may be used to increase the resistivity of the bit region, decrease the resistivity of the bit region, or determine the resistivity of the bit region. A diode is formed between at the interface between the resistive memory material and the lower electrodes, which may be formed as doped regions, isolated from each other by shallow trench isolation.
    Type: Application
    Filed: March 17, 2003
    Publication date: November 6, 2003
    Inventors: Sheng Teng Hsu, Wei Pan, Wei-Wei Zhuang
  • Publication number: 20030203111
    Abstract: A method for chemical vapor deposition of copper metal thin film on a substrate includes heating a substrate onto which the copper metal thin film is to be deposited in a chemical vapor deposition chamber; vaporizing a precursor containing the copper metal, wherein the precursor is a compound of (&agr;-methylstyrene)Cu(I)(hfac), where hfac is hexafluoroacetylacetonate, and (hfac)Cu(I)L, where L is an alkene; introducing the vaporized precursor into the chemical vapor deposition chamber adjacent the heated substrate; and condensing the vaporized precursor onto the substrate thereby depositing copper metal onto the substrate. A copper metal precursor for use in the chemical vapor deposition of a copper metal thin film is a compound of (&agr;-methylstyrene)Cu(I)(hfac), where hfac is hexafluoroacetylacetonate, and (hfac)Cu(I)L, where L is an alkene taken from the group of alkenes consisting of 1-pentene, 1-hexene and trimethylvinylsilane.
    Type: Application
    Filed: June 2, 2003
    Publication date: October 30, 2003
    Inventors: Wei-Wei Zhuang, Lawrence J. Charneski, David R. Evans, Sheng Teng Hsu
  • Publication number: 20030197587
    Abstract: A solid-state inductor and a method for forming a solid-state inductor are provided. The method comprises: forming a bottom electrode; forming a colossal magnetoresistance (CMR) thin film overlying the bottom electrode; forming a top electrode overlying the CMR thin film; applying an electrical field treatment to the CMR thin film in the range of 0.4 to 1 megavolts per centimeter (MV/cm) with a pulse width in the range of 100 nanoseconds (ns) to 1 millisecond (ms); in response to the electrical field treatment, converting the CMR thin film into a CMR thin film inductor; applying a bias voltage between the top and bottom electrodes; and, in response to the applied bias voltage, creating an inductance between the top and bottom electrodes. When the applied bias voltage is varied, the inductance varies in response.
    Type: Application
    Filed: April 22, 2002
    Publication date: October 23, 2003
    Inventors: Wei Pan, Sheng Teng Hsu, Wei-Wei Zhuang
  • Publication number: 20030180969
    Abstract: A polycrystalline memory structure is described for improving reliability and yield of devices employing polycrystalline memory materials comprising a polycrystalline memory layer, which has crystal grain boundaries forming gaps between adjacent crystallites overlying a substrate. An insulating material is located at least partially within the gaps to at least partially block the entrance to the gaps. A method of forming a polycrystalline memory structure is also described. A layer of material is deposited and annealed to form a polycrystalline memory material having gaps between adjacent crystallites. An insulating material is deposited over the polycrystalline memory material to at least partially fill the gaps, thereby blocking a portion of each gap.
    Type: Application
    Filed: January 15, 2003
    Publication date: September 25, 2003
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Sheng Teng Hsu, Tingkai Li, Fengyan Zhang, Wei-Wei Zhuang
  • Publication number: 20030176012
    Abstract: A method of forming an electrode and a ferroelectric thin film thereon, includes preparing a substrate; depositing an electrode on the substrate, wherein the electrode is formed of a material taken from the group of materials consisting of iridium and iridium composites; and forming a single-phase, c-axis PGO ferroelectric thin film thereon, wherein the ferroelectric thin film exhibits surface smoothness and uniform thickness.
    Type: Application
    Filed: March 10, 2003
    Publication date: September 18, 2003
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Fengyan Zhang, Jer-Shen Maa, Wei-Wei Zhuang, Sheng Teng Hsu
  • Publication number: 20030156445
    Abstract: A method of changing the resistance of a perovskite metal oxide thin film device with a resistance-change-producing pulse includes changing the resistance of the device by varying the duration of a resistance-change-producing pulse.
    Type: Application
    Filed: September 26, 2002
    Publication date: August 21, 2003
    Inventors: Wei-Wei Zhuang, Sheng Teng Hsu