Patents by Inventor Wei Zhuang

Wei Zhuang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100324053
    Abstract: The present invention relates to 1-aryl-3-aniline-5-alkyl-1,2,4-triazole derivatives and analogues or pharmaceutically acceptable salts thereof, processes for preparing them, pharmaceutical compositions containing them and their use in therapy, according to Formula (I). The invention particularly relates to potent positive allosteric modulators of nicotinic acetylcholine receptors, such positive allosteric modulator having the capability to increase the efficacy of nicotinic receptor agonists.
    Type: Application
    Filed: March 18, 2009
    Publication date: December 23, 2010
    Inventors: Gregor James MacDonald, Johannes Wilhelmus John F. Thuring, Pauline Carol Stanislawski, Wei Zhuang, Yves Emiel Maria Van Roosbroeck, Frans Alfons Maria Van Den Keybus
  • Publication number: 20100216846
    Abstract: The present invention relates to substituted 1-(alkyl)-3-aniline-5-aryl triazole derivatives and analogues or pharmaceutically acceptable salts thereof, processes for preparing them, pharmaceutical compositions containing them and their use in therapy, according to Formula (I). The invention particularly relates to potent positive allosteric modulators of nicotinic acetylcholine receptors which have the capability of increasing the efficacy of nicotinic receptor agonists.
    Type: Application
    Filed: October 15, 2008
    Publication date: August 26, 2010
    Inventors: Johannes Wilhelmus John F. Thuring, Theodorus Dinklo, Anne Simone Josephine Lesage, Marcel Frans Leopold De Bruyn, Wei Zhuang
  • Patent number: 7696550
    Abstract: A multi-layer PrxCa1-xMnO3 (PCMO) thin film capacitor and associated deposition method are provided for forming a bipolar switching thin film. The method comprises: forming a bottom electrode; depositing a nanocrystalline PCMO layer; depositing a polycrystalline PCMO layer; forming a multi-layer PCMO film with bipolar switching properties; and, forming top electrode overlying the PCMO film. If the polycrystalline layers are deposited overlying the nanocrystalline layers, a high resistance can be written with narrow pulse width, negative voltage pulses. The PCMO film can be reset to a low resistance using a narrow pulse width, positive amplitude pulse. Likewise, if the nanocrystalline layers are deposited overlying the polycrystalline layers, a high resistance can be written with narrow pulse width, positive voltage pulses, and reset to a low resistance using a narrow pulse width, negative amplitude pulse.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: April 13, 2010
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Tingkai Li, Lawrence J. Charneski, Wei-Wei Zhuang, David R. Evans, Sheng Teng Hsu
  • Patent number: 7633108
    Abstract: A method is provided for forming a metal/semiconductor/metal (MSM) current limiter and resistance memory cell with an MSM current limiter. The method provides a substrate; forms an MSM bottom electrode overlying the substrate; forms a ZnOx semiconductor layer overlying the MSM bottom electrode, where x is in the range between about 1 and about 2, inclusive; and, forms an MSM top electrode overlying the semiconductor layer. The ZnOx semiconductor can be formed through a number of different processes such as spin-coating, direct current (DC) sputtering, radio frequency (RF) sputtering, metalorganic chemical vapor deposition (MOCVD), or atomic layer deposition (ALD).
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: December 15, 2009
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Tingkai Li, Sheng Teng Hsu, Wei-Wei Zhuang, David R. Evans
  • Patent number: 7625595
    Abstract: A method of monitoring synthesis of PCMO precursor solutions includes preparing a PCMO precursor solution and withdrawing samples of the precursor solution at intervals during a reaction phase of the PCMO precursor solution synthesis. The samples of the PCMO precursor solution are analyzed by UV spectroscopy to determine UV transmissivity of the samples of the PCMO precursor solution and the samples used to form PCMO thin films. Electrical characteristics of the PCMO thin films formed from the samples are determined to identify PCMO thin films having optimal electrical characteristics. The UV spectral characteristics of the PCMO precursor solutions are correlated with the PCMO thin films having optimal electrical characteristics. The UV spectral characteristics are used to monitor synthesis of future batches of the PCMO precursor solutions, which will result in PCMO thin films having optimal electrical characteristics.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: December 1, 2009
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Wei-Wei Zhuang, David R. Evans, Tingkai Li, Sheng Teng Hsu
  • Publication number: 20090253691
    Abstract: The present invention relates to 3-aniline-5-aryl triazole derivatives and analogues or pharmaceutically acceptable salts thereof, processes for preparing them, pharmaceutical compositions containing them and their use in therapy, according to Formula (I). The invention particularly relates to positive allosteric modulators of nicotinic acetylcholine receptors, such positive allosteric modulator having the capability to increase the efficacy of nicotinic receptor agonists.
    Type: Application
    Filed: April 19, 2007
    Publication date: October 8, 2009
    Applicants: JANSSEN PHARMACEUTICA N.V., BIOFOCUS DPI LIMITED
    Inventors: Johannes Wilhelmus John F. Thuring, Gregor James MacDonald, Anne Simone Josephine Lesage, Wei Zhuang, Marcel Frans Leopold De Bruyn, Frans Alfons Maria Van Den Keybus, Yves Emiel Maria Van Roosbroeck, Theodorus Dinklo
  • Patent number: 7585788
    Abstract: A method is provided for forming a rare earth element-doped silicon oxide (SiO2) precursor with nanocrystalline (nc) Si particles. In one aspect the method comprises: mixing Si particles into a first organic solvent, forming a first solution with a first boiling point; filtering the first solution to remove large Si particles; mixing a second organic solvent having a second boiling point, higher than the first boiling point, to the filtered first solution; and, fractionally distilling, forming a second solution of nc Si particles. The Si particles are formed by immersing a Si wafer into a third solution including hydrofluoric (HF) acid and alcohol, applying an electric bias, and forming a porous Si layer overlying the Si wafer. Then, the Si particles are mixed into the organic solvent by depositing the Si wafer into the first organic solvent, and ultrasonically removing the porous Si layer from the Si wafer.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: September 8, 2009
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Wei-Wei Zhuang, Yoshi Ono, Sheng Teng Hsu, Tingkai Li
  • Patent number: 7531466
    Abstract: A method of making a doped silicon oxide thin film using a doped silicon oxide precursor solution includes mixing a silicon source in an organic acid and adding 2-methoxyethyl ether to the silicon source and organic acid to from a preliminary precursor solution. The resultant solution is heated, stirred and filtered. A doping impurity is dissolved in 2-methoxyethanol to from a doped source solution, and the resultant solution mixed with the previously described resultant solution to from a doped silicon oxide precursor solution. A doped silicon oxide thin film if formed on a wafer by spin coating. The thin film and the wafer are baked at progressively increasing temperatures and the thin film and the wafer are annealed.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: May 12, 2009
    Assignee: Sharp LaborAtories of America, Inc.
    Inventors: Wei-Wei Zhuang, Yoshi Ono, Tingkai Li
  • Patent number: 7402456
    Abstract: A method is provided for forming a Pr0.3Ca0.7MnO3 (PCMO) thin film with crystalline structure-related memory resistance properties. The method comprises: forming a PCMO thin film with a first crystalline structure; and, changing the resistance state of the PCMO film using pulse polarities responsive to the first crystalline structure. In one aspect the first crystalline structure is either amorphous or a weak-crystalline. Then, the resistance state of the PCMO film is changed in response to unipolar pulses. In another aspect, the PCMO thin film has either a polycrystalline structure. Then, the resistance state of the PCMO film changes in response to bipolar pulses.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: July 22, 2008
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Wei-Wei Zhuang, Tingkai Li, Sheng Teng Hsu, Fengyan Zhang
  • Publication number: 20080171424
    Abstract: A method of fabricating a continuous layer of a defect sensitive material on a silicon substrate includes preparing a silicon substrate; forming a nanostructure array directly on the silicon substrate; depositing a selective growth enhancing layer on the substrate; smoothing the selective growth enhancing layer; and growing a continuous layer of the defect sensitive material on the nanostructure array.
    Type: Application
    Filed: January 16, 2007
    Publication date: July 17, 2008
    Inventors: Tingkai Li, Jer-Shen Maa, Douglas J. Tweet, Wei-Wei Zhuang, Sheng Teng Hsu
  • Publication number: 20080090317
    Abstract: A nanotip electroluminescence (EL) diode and a method are provided for fabricating said device. The method comprises: forming a plurality of Si nanotip diodes; forming a phosphor layer overlying the nanotip diode; and, forming a top electrode overlying the phosphor layer. The nanotip diodes are formed by: forming a Si substrate with a top surface; forming a Si p-well; forming an n+ layer of Si, having a thickness in the range of 30 to 300 nanometers (nm) overlying the Si p-well; forming a reactive ion etching (RIE)-induced polymer grass overlying the substrate top surface; using the RIE-induced polymer grass as a mask, etching areas of the substrate not covered by the mask; and, forming the nanotip diodes in areas of the substrate covered by the mask.
    Type: Application
    Filed: November 29, 2007
    Publication date: April 17, 2008
    Inventors: Sheng Hsu, Tingkai Li, Wei-Wei Zhuang
  • Publication number: 20080026494
    Abstract: A method of fabricating an electroluminescent device includes preparing a wafer and a doped-silicon oxide precursor solution. The doped-silicon oxide precursor solution is spin coated onto the wafer to form a doped-silicon oxide thin film on the wafer, which is baked at progressively increasing temperatures. The wafer is then rapidly thermally annealed, further annealed in a wet oxygen ambient atmosphere. A transparent top electrode is deposited on the doped-silicon oxide thin film, which is patterned, etched, and annealed. The doped-silicon oxide thin film and the wafer undergo a final annealing step to enhance electroluminescent properties.
    Type: Application
    Filed: July 26, 2006
    Publication date: January 31, 2008
    Inventors: Wei-Wei Zhuang, Yoshi Ono, Wei Gao, Tingkai Li
  • Publication number: 20080026590
    Abstract: A method of making a doped silicon oxide thin film using a doped silicon oxide precursor solution includes mixing a silicon source in an organic acid and adding 2-methoxyethyl ether to the silicon source and organic acid to from a preliminary precursor solution. The resultant solution is heated, stirred and filtered. A doping impurity is dissolved in 2-methoxyethanol to from a doped source solution, and the resultant solution mixed with the previously described resultant solution to from a doped silicon oxide precursor solution. A doped silicon oxide thin film if formed on a wafer by spin coating. The thin film and the wafer are baked at progressively increasing temperatures and the thin film and the wafer are annealed.
    Type: Application
    Filed: July 26, 2006
    Publication date: January 31, 2008
    Inventors: Wei-Wei Zhuang, Yoshi Ono, Tingkai Li
  • Patent number: 7323349
    Abstract: A method of fabricating resistor memory array includes preparing a silicon substrate; depositing a bottom electrode, a sacrificial layer, and a hard mask layer on a substrate P+ layer; masking, patterning and etching to remove, in a first direction, a portion of the hard mask, the sacrificial material, the bottom electrode; depositing a layer of silicon oxide; masking, patterning and etching to remove, in a second direction perpendicular to the first direction, a portion of the hard mask, the sacrificial material, the bottom electrode;, and over etching to an N+ layer and at least 100 nm of the silicon substrate; depositing of a layer of silicon oxide; etching to remove any remaining hard mask and any remaining sacrificial material; depositing a layer of CMR material; depositing a top electrode; applying photoresist, patterning the photoresist and etching the top electrode; and incorporating the memory array into an integrated circuit.
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: January 29, 2008
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Sheng Teng Hsu, Jong-Jan Lee, Jer-Shen Maa, Douglas J. Tweet, Wei-Wei Zhuang
  • Patent number: 7320897
    Abstract: A nanotip electroluminescence (EL) diode and a method are provided for fabricating said device. The method comprises: forming a plurality of Si nanotip diodes; forming a phosphor layer overlying the nanotip diode; and, forming a top electrode overlying the phosphor layer. The nanotip diodes are formed by: forming a Si substrate with a top surface; forming a Si p-well; forming an n+ layer of Si, having a thickness in the range of 30 to 300 nanometers (nm) overlying the Si p-well; forming a reactive ion etching (RIE)-induced polymer grass overlying the substrate top surface; using the RIE-induced polymer grass as a mask, etching areas of the substrate not covered by the mask; and, forming the nanotip diodes in areas of the substrate covered by the mask.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: January 22, 2008
    Assignee: Sharp Laboratories of Amrica, Inc.
    Inventors: Sheng Teng Hsu, Tingkai Li, Wei-Wei Zhuang
  • Publication number: 20070284575
    Abstract: A method is provided for forming a metal/semiconductor/metal (MSM) current limiter and resistance memory cell with an MSM current limiter. The method comprises: providing a substrate; forming an MSM bottom electrode overlying the substrate; forming a ZnOx semiconductor layer overlying the MSM bottom electrode, where x is in the range between about 1 and about 2, inclusive; and, forming an MSM top electrode overlying the semiconductor layer. The ZnOx semiconductor can be formed through a number of different processes such as spin-coating, direct current (DC) sputtering, radio frequency (RF) sputtering, metalorganic chemical vapor deposition (MOCVD), or atomic layer deposition (ALD).
    Type: Application
    Filed: August 15, 2007
    Publication date: December 13, 2007
    Inventors: Tingkai Li, Sheng Hsu, Wei-Wei Zhuang, David Evans
  • Publication number: 20070259127
    Abstract: A method for densifying sol-gel films to form microlens structures includes preparing a sol-gel precursor, having at least one solvent therein. The sol-gel precursor is spin coated onto a wafer to form a sol-gel film thereon. The wafer and sol-gel film are hot plate baked at a temperature less than 200° C. to remove at least some of the solvent. The baked, wafer and spin-coated sol-gel film are treated with an oxygen plasma treatment to remove any remaining solvent and to densify the sol-gel film. The spin coating, hot plate baking and treating steps may be repeated as required. A microlens is formed from the densified sol-gel film.
    Type: Application
    Filed: May 2, 2006
    Publication date: November 8, 2007
    Inventors: Yoshi Ono, Bruce Ulrich, Wei-Wei Zhuang, Douglas Tweet
  • Publication number: 20070238239
    Abstract: A method is provided for forming a rare earth element-doped silicon oxide (SiO2) precursor with nanocrystalline (nc) Si particles. In one aspect the method comprises: mixing Si particles into a first organic solvent, forming a first solution with a first boiling point; filtering the first solution to remove large Si particles; mixing a second organic solvent having a second boiling point, higher than the first boiling point, to the filtered first solution; and, fractionally distilling, forming a second solution of nc Si particles. The Si particles are formed by immersing a Si wafer into a third solution including hydrofluoric (HF) acid and alcohol, applying an electric bias, and forming a porous Si layer overlying the Si wafer. Then, the Si particles are mixed into the organic solvent by depositing the Si wafer into the first organic solvent, and ultrasonically removing the porous Si layer from the Si wafer.
    Type: Application
    Filed: September 12, 2005
    Publication date: October 11, 2007
    Inventors: Wei-Wei Zhuang, Yoshi Ono, Sheng Teng-Hsu, Tingkai Li
  • Publication number: 20070238203
    Abstract: A method of monitoring synthesis of PCMO precursor solutions includes preparing a PCMO precursor solution and withdrawing samples of the precursor solution at intervals during a reaction phase of the PCMO precursor solution synthesis. The samples of the PCMO precursor solution are analyzed by UV spectroscopy to determine UV transmissivity of the samples of the PCMO precursor solution and the samples used to form PCMO thin films. Electrical characteristics of the PCMO thin films formed from the samples are determined to identify PCMO thin films having optimal electrical characteristics. The UV spectral characteristics of the PCMO precursor solutions are correlated with the PCMO thin films having optimal electrical characteristics. The UV spectral characteristics are used to monitor synthesis of future batches of the PCMO precursor solutions, which will result in PCMO thin films having optimal electrical characteristics.
    Type: Application
    Filed: April 11, 2006
    Publication date: October 11, 2007
    Inventors: Wei-Wei Zhuang, David Evans, Tingkai Li, Sheng Hsu
  • Publication number: 20070221975
    Abstract: A multi-layer PrxCa1-xMnO3 (PCMO) thin film capacitor and associated deposition method are provided for forming a bipolar switching thin film. The method comprises: forming a bottom electrode; depositing a nanocrystalline PCMO layer; depositing a polycrystalline PCMO layer; forming a multi-layer PCMO film with bipolar switching properties; and forming top electrode overlying the PCMO film. If the polycrystalline layers are deposited overlying the nanocrystalline layers, a high resistance can be written with narrow pulse width, negative voltage pulses. The PCMO film can be reset to a low resistance using a narrow pulse width, positive amplitude pulse. Likewise, if the nanocrystalline layers are deposited overlying the polycrystalline layers, a high resistance can be written with narrow pulse width, positive voltage pulses, and reset to a low resistance using a narrow pulse width, negative amplitude pulse.
    Type: Application
    Filed: May 22, 2007
    Publication date: September 27, 2007
    Inventors: Tingkai Li, Lawrence Charneski, Wei-Wei Zhuang, David Evans, Sheng Hsu