Patents by Inventor Wen-Hsiung Liao

Wen-Hsiung Liao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10883487
    Abstract: A micro-electromechanical fluid control device includes at least one flow guiding unit. The at least one flow guiding unit includes an inlet plate, a substrate, a resonance membrane, an actuating membrane and an outlet plate sequentially stacked. A first chamber is defined between the resonance membrane and the actuating membrane and a second chamber is defined between the actuating membrane and the outlet plate. While the piezoelectric membrane of the flow guiding unit drives the actuating membrane, a fluid is inhaled into the convergence chamber via the inlet of the inlet plate, transported into the first chamber via the central aperture of the resonance membrane, transported into the second chamber via a vacant space of the actuating membrane, and discharged out from the outlet of the outlet plate, so as to control the fluid to flow.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: January 5, 2021
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Ta-Wei Hsueh, Ying-Lun Chang, Rong-Ho Yu, Cheng-Ming Chang, Hsien-Chung Tai, Wen-Hsiung Liao, Yung-Lung Han, Chi-Feng Huang
  • Patent number: 10800653
    Abstract: A manufacturing method of micro channel structure is disclosed and includes steps of: providing a substrate; depositing and etching to form a first insulation layer; depositing and etching to form a supporting layer; depositing and etching to form a valve layer; depositing and etching to form a second insulation layer; depositing and etching to form a vibration layer, a lower electrode layer and a piezoelectric actuating layer; providing a photoresist layer and depositing and etching to form a plurality of bonding pads; depositing and etching to from a mask layer; etching to form a first chamber; and etching to form a second chamber.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: October 13, 2020
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Rong-Ho Yu, Cheng-Ming Chang, Hsien-Chung Tai, Wen-Hsiung Liao, Chi-Feng Huang, Yung-Lung Han, Chang-Yen Tsai
  • Publication number: 20200309111
    Abstract: A micro-electromechanical systems pump includes a first substrate, a first oxide layer, a second substrate, and a piezoelectric element. The first oxide layer is stacked on the first substrate. The second substrate is combined with the first substrate, and the second substrate includes a silicon wafer layer, a second oxide layer, and a silicon material layer. The silicon wafer layer has an actuation portion. The actuation portion is circular and has a maximum stress value and an actuation stress value. The second oxide layer is formed on the silicon wafer layer. The silicon material layer is located at the second oxide layer and is combined with the first oxide layer. The piezoelectric element is stacked on the actuation portion, and has a piezoelectric stress value. The maximum stress value is greater than the actuation stress value, and the actuation stress value is greater than the piezoelectric stress value.
    Type: Application
    Filed: March 20, 2020
    Publication date: October 1, 2020
    Inventors: Hao-Jan Mou, Rong-Ho Yu, Cheng-Ming Chang, Hsien-Chung Tai, Wen-Hsiung Liao, Chi-Feng Huang, Yung-Lung Han, Chun-Yi Kuo
  • Patent number: 10775289
    Abstract: A gas detecting device includes a casing, an optical mechanism, a gas transporting actuator, a laser module, a particle detector and an external sensing module. The casing includes a chamber, an inlet, an outlet and a communication channel. The optical mechanism is disposed in the chamber. The optical mechanism includes an airflow channel and a light-beam channel. The airflow channel is in fluid communication with the at least one inlet and the outlet. The light-beam channel is in communication with the airflow channel. The gas transporting actuator is disposed on the optical mechanism. The laser module is disposed in the optical mechanism for emitting a light beam to the airflow channel. The particle detector detects sizes and a concentration of the suspended particles in the air. The external sensing module is installed in the communication channel to measure the air.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: September 15, 2020
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Hung-Chun Hu, Young-Chih Kuo, Jui-Yuan Chu, Chien-Chih Huang, Wen-Hsiung Liu, Yi-Cheng Huang, Wei-Chen Liao, Chi-Chiang Hsieh, Chi-Feng Huang, Yung-Lung Han
  • Publication number: 20200240400
    Abstract: A MEMS pump module includes a MEMS chip, at least one signal electrode, a plurality of MEMS pumps and a plurality of switch units. The MEMS chip comprises a chip body. The signal electrode is disposed on the chip body. Each of the MEMS pumps comprises a first electrode and a second electrode. The second electrode is electrically connected to the signal electrode. The switch units are electrically connected to the first electrodes of the MEMS pumps. A modulation voltage is received by the at least one signal electrode and then is transmitted to the second electrodes of the MEMS pumps. The on-off actions of MEMS pumps are controlled by the plurality of switch units.
    Type: Application
    Filed: January 22, 2020
    Publication date: July 30, 2020
    Applicant: Microjet Technology Co., Ltd.
    Inventors: Hao-Jan Mou, Rong-Ho Yu, Cheng-Ming Chang, Hsien-Chung Tai, Wen-Hsiung Liao, Chi-Feng Huang, Yung-Lung Han, Chang-Yen Tsai
  • Publication number: 20200224791
    Abstract: A micro fluid actuator includes a first substrate, a chamber layer, a vibration layer, a first metal layer, a piezoelectric actuation layer, a second metal layer, a second substrate, an inlet layer, a resonance layer and an aperture array plate. The first substrate includes a plurality of first outflow apertures and a plurality of second outflow apertures. The chamber layer includes a storage chamber. The second metal layer includes an upper electrode pad and a lower electrode pad. While driving power having different phase charges is provided to the upper electrode pad and the lower electrode pad to drive and control the vibration layer to displace in a reciprocating manner, the fluid is inhaled from the exterior through the inlet layer, converged to the storage chamber, compressed and pushes out the aperture array plate, and then is discharged out from the micro fluid actuator to achieve fluid transportation.
    Type: Application
    Filed: January 13, 2020
    Publication date: July 16, 2020
    Applicant: Microjet Technology Co., Ltd.
    Inventors: Hao-Jan Mou, Rong-Ho Yu, Cheng-Ming Chang, Hsien-Chung Tai, Wen-Hsiung Liao, Chi-Feng Huang, Yung-Lung Han, Hsuan-Kai Chen
  • Publication number: 20200182233
    Abstract: A MEMS pump module includes a microprocessor and a MEMS chip. The microprocessor outputs a constant voltage and a variable voltage. The MEMS chip includes a chip body, a plurality of MEMS pumps and at least one common electrode. The plurality of MEMS pumps are disposed on the chip body, and each MEMS pump includes a first electrode and a second electrode. The at least one common electrode is disposed on the chip body and electrically connected to the second electrodes of the plurality of MEMS pumps. The microprocessor is electrically connected to the first electrodes of the plurality of MEMS pumps and the at least one common electrode so as to transmit the constant voltage to the at least one common electrode and transmit the variable voltage to the first electrodes of the plurality of MEMS pumps.
    Type: Application
    Filed: November 20, 2019
    Publication date: June 11, 2020
    Applicant: Microjet Technology Co., Ltd.
    Inventors: Hao-Jan Mou, Rong-Ho Yu, Cheng-Ming Chang, Hsien-Chung Tai, Wen-Hsiung Liao, Chi-Feng Huang, Yung-Lung Han, Chun-Yi Kuo
  • Publication number: 20200166155
    Abstract: A micro fluid actuator includes an orifice layer, a flow channel layer, a substrate, a chamber layer, a vibration layer, a lower electrode layer, a piezoelectric actuation layer and an upper electrode layer, which are stacked sequentially. An outflow aperture, a plurality of first inflow apertures and a second inflow aperture are formed in the substrate by an etching process. A storage chamber is formed in the chamber layer by the etching process. An outflow opening and an inflow opening are formed in the orifice layer by the etching process. An outflow channel, an inflow channel and a plurality of columnar structures are formed in the flow channel layer by a lithography process. By providing driving power which have different phases to the upper electrode layer and the lower electrode layer, the vibration layer is driven to displace in a reciprocating manner, so as to achieve fluid transportation.
    Type: Application
    Filed: October 23, 2019
    Publication date: May 28, 2020
    Applicant: Microjet Technology Co., Ltd.
    Inventors: Hao-Jan Mou, Rong-Ho Yu, Cheng-Ming Chang, Hsien-Chung Tai, Wen-Hsiung Liao, Chi-Feng Huang, Yung-Lung Han, Hsuan-Kai Chen
  • Patent number: 10658102
    Abstract: A method for manufacturing an electronic device, the method comprising: providing a conducting wire; forming a mixture with the conducting wire buried therein, wherein the mixture comprises: a first magnetic powder and a second magnetic powder, wherein the mean particle diameter of the first magnetic powder is greater than the mean particle diameter of the second magnetic powder, and the Vicker's Hardness of the first magnetic powder is greater than the Vicker's Hardness of the second magnetic powder by a first hardness difference; and performing a molding process on the conducting wire and the mixture, wherein the mixture and the conducting wire buried therein are combined to form an integral magnetic body at a temperature lower than the melting point of the conducting wire.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: May 19, 2020
    Assignee: CYNTEC CO., LTD.
    Inventors: Wen-Hsiung Liao, Roger Hsieh, Hideo Ikuta, Yueh-Lang Chen
  • Publication number: 20200140264
    Abstract: A manufacturing method of micro channel structure is disclosed and includes steps of: providing a substrate; depositing and etching to form a first insulation layer; depositing and etching to form a supporting layer; depositing and etching to form a valve layer; depositing and etching to form a second insulation layer; depositing and etching to form a vibration layer, a lower electrode layer and a piezoelectric actuating layer; providing a photoresist layer and depositing and etching to form a plurality of bonding pads; depositing and etching to from a mask layer; etching to form a first chamber; and etching to form a second chamber.
    Type: Application
    Filed: October 23, 2019
    Publication date: May 7, 2020
    Applicant: Microjet Technology Co., Ltd.
    Inventors: Hao-Jan Mou, Rong-Ho Yu, Cheng-Ming Chang, Hsien-Chung Tai, Wen-Hsiung Liao, Chi-Feng Huang, Yung-Lung Han, Chang-Yen Tsai
  • Publication number: 20200139368
    Abstract: A micro channel structure includes a substrate, a supporting layer, a valve layer, a second insulation layer, a vibration layer and a bonding-pad layer. A flow channel is formed on the substrate. A conductive part and a movable part are formed on the supporting layer and the valve layer, respectively. A first chamber is formed at the interior of a base part and communicates to the hollow aperture. A supporting part is formed on the second insulation layer. A second chamber is formed at the interior of the supporting layer and communicates to the first chamber through the hollow aperture. A suspension part is formed on the vibration layer. By providing driving power sources having different phases to the bonding-pad layer, the suspension part moves upwardly and downwardly, and a relative displacement is generated between the movable part and the conductive part, to achieve fluid transportation.
    Type: Application
    Filed: October 23, 2019
    Publication date: May 7, 2020
    Applicant: Microjet Technology Co., Ltd.
    Inventors: Hao-Jan Mou, Rong-Ho Yu, Cheng-Ming Chang, Hsien-Chung Tai, Wen-Hsiung Liao, Chi-Feng Huang, Yung-Lung Han, Chun-Yi Kuo
  • Publication number: 20200088185
    Abstract: A MEMS pump includes a first substrate, a first oxide layer, a second substrate, a second oxide layer, a third substrate and a piezoelectric element sequentially stacked to form the entire structure of the MEMS pump. The first substrate has a first thickness and at least one inlet aperture. The first oxide layer has at least one fluid inlet channel and a convergence chamber, wherein the fluid inlet channel communicates with the convergence chamber and the inlet aperture. The second substrate has a second thickness and a through hole, and the through hole is misaligned with the inlet aperture and communicates with the convergence chamber. The second oxide layer has a first chamber with a concave central portion. The third substrate has a third thickness and a plurality of gas flow channels, wherein the gas flow channels are misaligned with the through hole.
    Type: Application
    Filed: September 13, 2019
    Publication date: March 19, 2020
    Applicant: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Rong-Ho Yu, Cheng-Ming Chang, Hsien-Chung Tai, Wen-Hsiung Liao, Chi-Feng Huang, Yung-Lung Han, Chang-Yen Tsai
  • Patent number: 10498034
    Abstract: An antenna module is disclosed. The antenna module includes a circuit board and at least one antenna set. Wherein, the antenna set includes a driving antenna and a plurality of parasitic antennas. The driving antenna is formed on the circuit board, and the parasitic antennas are positioned with the driving antenna as a center on the circuit board. Whereby, the space occupied by the antenna module can be small, and beams of wireless signals radiated by the antenna module can be controlled.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: December 3, 2019
    Assignee: ACCTON TECHNOLOGY CORPORATION
    Inventors: I-Ru Liu, Yen-Lin Liao, Hsin-Hsiung Kang, Li-Hua Chou, Wen-Pin Lo, Chun-Yi Kuo, Chang-Cheng Liu
  • Publication number: 20190311837
    Abstract: A method for manufacturing an electronic device, the method comprising: providing a conducting wire; forming a mixture with the conducting wire buried therein, wherein the mixture comprises: a first magnetic powder and a second magnetic powder, wherein the mean particle diameter of the first magnetic powder is greater than the mean particle diameter of the second magnetic powder, and the Vicker's Hardness of the first magnetic powder is greater than the Vicker's Hardness of the second magnetic powder by a first hardness difference; and performing a molding process on the conducting wire and the mixture, wherein the mixture and the conducting wire buried therein are combined to form an integral magnetic body at a temperature lower than the melting point of the conducting wire.
    Type: Application
    Filed: June 25, 2019
    Publication date: October 10, 2019
    Inventors: Wen-Hsiung Liao, Roger Hsieh, Hideo Ikuta, Yueh-Lang Chen
  • Publication number: 20190301813
    Abstract: A sleeve-type heat conducting structure includes a heat conducting device (1), a sleeve (2), and a heat pipe (3). The heat conducting device (1) has a working portion (10) and a sleeve-connecting portion (11); a fitting hole (110) is disposed in the sleeve-connecting portion (11) such that the sleeve (2) is fastened in the fitting hole (110). The heat pipe (3) has an end disposed movably in the sleeve (2) and the other end exposed out of the sleeve (2) in which the end of the heat pipe (3) sleeved into the sleeve (2) can slide axially in the sleeve (2) and the heat pipe (3) can rotate with respect to the heat conducting device (1) through the sleeve (2).
    Type: Application
    Filed: March 15, 2019
    Publication date: October 3, 2019
    Inventors: Pang-Hung LIAO, Kuo-Feng TSENG, Wen-Hsiung JIANG
  • Patent number: 10411352
    Abstract: The present invention discloses an antenna tuning system and method thereof. The method comprises the following steps: choosing a parasitic antenna that combined with a main antenna, the strongest received signal strength indicator of a target station is detected; controlling the selected parasitic antenna that combined with a main antenna, to generate a scattering resonance through turning on or off a switch unit; and controlling a diffraction radiation pattern between the main antenna and the selected parasitic antenna through adjusting a load of a designed circuit.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: September 10, 2019
    Assignee: ACCTON TECHNOLOGY CORPORATION
    Inventors: I-Ru Liu, Wen-Pin Lo, Hsin-Hsiung Kang, Yang-Te Fu, Chang-Cheng Liu, Yen-Lin Liao, Yi-Chang Chen, Li-Hua Chou
  • Publication number: 20190234851
    Abstract: A gas detecting device includes a casing, an optical mechanism, a gas transporting actuator, a laser module, a particle detector and an external sensing module. The casing includes a chamber, an inlet, an outlet and a communication channel. The optical mechanism is disposed in the chamber. The optical mechanism includes an airflow channel and a light-beam channel. The airflow channel is in fluid communication with the at least one inlet and the outlet. The light-beam channel is in communication with the airflow channel. The gas transporting actuator is disposed on the optical mechanism. The laser module is disposed in the optical mechanism for emitting a light beam to the airflow channel. The particle detector detects sizes and a concentration of the suspended particles in the air. The external sensing module is installed in the communication channel to measure the air.
    Type: Application
    Filed: December 18, 2018
    Publication date: August 1, 2019
    Applicant: Microjet Technology Co., Ltd.
    Inventors: Hao-Jan MOU, Hung-Chun HU, Young-Chih KUO, Jui-Yuan CHU, Chien-Chih HUANG, Wen-Hsiung LIU, Yi-Cheng HUANG, Wei-Chen LIAO, Chi-Chiang HSIEH, Chi-Feng HUANG, Yung-Lung HAN
  • Publication number: 20190148050
    Abstract: A method for manufacturing an electronic device, the method comprising: providing a conducting wire; forming a mixture with the conducting wire buried therein, wherein the mixture comprises: a first magnetic powder and a second magnetic powder, wherein the mean particle diameter of the first magnetic powder is greater than the mean particle diameter of the second magnetic powder, and the Vicker's Hardness of the first magnetic powder is greater than the Vicker's Hardness of the second magnetic powder by a first hardness difference; and performing a molding process on the conducting wire and the mixture, wherein by means of the first hardness difference of the first magnetic powder and the second magnetic powder, the mixture and the conducting wire buried therein are combined to form an integral magnetic body at a temperature lower than the melting point of the conducting wire.
    Type: Application
    Filed: January 16, 2019
    Publication date: May 16, 2019
    Inventors: Wen-Hsiung Liao, Roger Hsieh, Hideo Ikuta, Yueh-Lang Chen
  • Publication number: 20190101939
    Abstract: The present disclosure provides a control method of a fluid device. The control method includes the steps of (a) providing the fluid device, which includes a plurality of flow guiding units manufactured by a micro-electro-mechanical-system process; (b) dividing the flow guiding units into a plurality of groups, which are electrically connected to and controlled by a control module; and (c) generating a driving signal by the control module for a corresponding one of the groups, wherein the control module generates a high level signal to a specific one of the groups, so that the flow guiding units of the specific one of the groups are driven to transport fluid, and thereby controlling the fluid device to discharge a specific amount of fluid.
    Type: Application
    Filed: August 23, 2018
    Publication date: April 4, 2019
    Applicant: Microjet Technology Co., Ltd.
    Inventors: Hao-Jan MOU, Rong-Ho YU, Cheng-Ming CHANG, Hsien-Chung TAI, Wen-Hsiung LIAO, Chang-Yen TSAI
  • Publication number: 20190063417
    Abstract: A micro-electromechanical fluid control device includes at least one flow guiding unit. The at least one flow guiding unit includes an inlet plate, a substrate, a resonance membrane, an actuating membrane and an outlet plate sequentially stacked. A first chamber is defined between the resonance membrane and the actuating membrane and a second chamber is defined between the actuating membrane and the outlet plate. While the piezoelectric membrane of the flow guiding unit drives the actuating membrane, a fluid is inhaled into the convergence chamber via the inlet of the inlet plate, transported into the first chamber via the central aperture of the resonance membrane, transported into the second chamber via a vacant space of the actuating membrane, and discharged out from the outlet of the outlet plate, so as to control the fluid to flow.
    Type: Application
    Filed: August 2, 2018
    Publication date: February 28, 2019
    Applicant: Microjet Technology Co., Ltd.
    Inventors: Hao-Jan MOU, Ta-Wei HSUEH, Ying-Lun CHANG, Rong-Ho YU, Cheng-Ming CHANG, Hsien-Chung TAI, Wen-Hsiung LIAO, Yung-Lung HAN, Chi-Feng HUANG