Patents by Inventor Wen Pan

Wen Pan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11901219
    Abstract: Methods of forming a semiconductor device structure are described. In some embodiments, the method includes forming an interconnect structure over a substrate. The forming the interconnect structure over the semiconductor device structure includes forming a dielectric layer, then performing an annealing process, then forming one or more openings in the dielectric layer, then performing a first ultraviolet (UV) curing process, and then forming conductive features in the one or more openings.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: February 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi-Wen Pan, You-Lan Li, Chung-Chi Ko
  • Patent number: 11894370
    Abstract: Methods of cutting gate structures and fins, and structures formed thereby, are described. In an embodiment, a substrate includes first and second fins and an isolation region. The first and second fins extend longitudinally parallel, with the isolation region disposed therebetween. A gate structure includes a conformal gate dielectric over the first fin and a gate electrode over the conformal gate dielectric. A first insulating fill structure abuts the gate structure and extends vertically from a level of an upper surface of the gate structure to at least a surface of the isolation region. No portion of the conformal gate dielectric extends vertically between the first insulating fill structure and the gate electrode. A second insulating fill structure abuts the first insulating fill structure and an end sidewall of the second fin. The first insulating fill structure is disposed laterally between the gate structure and the second insulating fill structure.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: February 6, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ryan Chia-Jen Chen, Cheng-Chung Chang, Shao-Hua Hsu, Yu-Hsien Lin, Ming-Ching Chang, Li-Wei Yin, Tzu-Wen Pan, Yi-Chun Chen
  • Patent number: 11762439
    Abstract: The present invention provides a method of dynamic thermal management applied to a portable device, wherein the method includes the steps of: obtaining a surface temperature of the portable device; obtaining a junction temperature of a chip of the portable device; and calculating an upper limit of the junction temperature according to the junction temperature and the surface temperature.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: September 19, 2023
    Assignee: MEDIATEK INC.
    Inventors: Pei-Yu Huang, Chih-Yuan Hsiao, Chiao-Pin Fan, Chi-Wen Pan, Tai-Yu Chen, Chien-Tse Fang, Jih-Ming Hsu, Yun-Ching Li
  • Patent number: 11754619
    Abstract: The present disclosure provides a probing apparatus for semiconductor devices using pressurized fluid to control the testing conditions. The probing apparatus includes a housing configured to define a testing chamber; a device holder positioned on the housing and configured to hold and support at least one device under test; a platen positioned on the housing and configured to retain at least one probe; a card holder positioned on the platen and configured to hold a probe card including the probe; and at least one flow line positioned in the card holder. The flow line is configured to flow a fluid therein to adjust the temperature of the device under test.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: September 12, 2023
    Assignee: STAR TECHNOLOGIES, INC.
    Inventors: Choon Leong Lou, Chen-Wen Pan, Jung-Chieh Liu
  • Patent number: 11728232
    Abstract: A semiconductor package includes a package substrate having a top surface and a bottom surface, and a stiffener ring mounted on the top surface of the package substrate. The stiffener ring includes a reinforcement rib that is coplanar with the stiffener ring on the top surface of the package substrate. At least two compartments are defined by the stiffener ring and the reinforcement rib. At least two individual chip packages are mounted on chip mounting regions within the at least two compartments, respectively, thereby constituting a package array on the package substrate.
    Type: Grant
    Filed: March 2, 2022
    Date of Patent: August 15, 2023
    Assignee: MediaTek Inc.
    Inventors: Chi-Wen Pan, I-Hsuan Peng, Sheng-Liang Kuo, Yi-Jou Lin, Tai-Yu Chen
  • Publication number: 20230154852
    Abstract: A method includes depositing a dielectric layer over a substrate, and etching the dielectric layer to form an opening and to expose a first conductive feature underlying the dielectric layer. The dielectric layer is formed using a precursor including nitrogen therein. The method further includes depositing a sacrificial spacer layer extending into the opening, and patterning the sacrificial spacer layer to remove a bottom portion of the sacrificial spacer layer. A vertical portion of the sacrificial spacer layer in the opening and on sidewalls of the dielectric layer is left to form a ring. A second conductive feature is formed in the opening. The second conductive feature is encircled by the ring, and is over and electrically coupled to the first conductive feature. At least a portion of the ring is removed to form an air spacer.
    Type: Application
    Filed: February 22, 2022
    Publication date: May 18, 2023
    Inventors: Ming-Tsung Lee, Yi-Wen Pan, Tzu-Nung Lu, You-Lan Li, Chung-Chi Ko
  • Publication number: 20230079022
    Abstract: Evaluating the performance of an X-ray tube by: recording arcing events that occurred during the use of the X-ray tube; classifying the arcing events by severity; generating, on the basis of the classified arcing events, a first growth pattern for occurrences of arcing events; and determining a level of bubbles in the X-ray tube by finding, on the basis of the first growth pattern, a matching second growth pattern associated with a known level of bubbles in the X-ray tube. An X-ray tube may be checked and replaced in a timely manner, without the need for an on-site inspection, by remotely predicting trends or patterns for growth of levels of bubbles in the X-ray tube.
    Type: Application
    Filed: September 9, 2022
    Publication date: March 16, 2023
    Applicant: Siemens Healthcare GmbH
    Inventors: Xin Yuan Yang, Yun Wen Pan, Xi Peng Nie
  • Publication number: 20230057914
    Abstract: Methods of forming a semiconductor device structure are described. In some embodiments, the method includes forming an interconnect structure over a substrate. The forming the interconnect structure over the semiconductor device structure includes forming a dielectric layer, then performing an annealing process, then forming one or more openings in the dielectric layer, then performing a first ultraviolet (UV) curing process, and then forming conductive features in the one or more openings.
    Type: Application
    Filed: August 19, 2021
    Publication date: February 23, 2023
    Inventors: Yi-Wen PAN, You-Lan LI, Chung-Chi KO
  • Publication number: 20230027789
    Abstract: Improved gate structures, methods for forming the same, and semiconductor devices including the same are disclosed. In an embodiment, a semiconductor device includes a gate structure over a semiconductor substrate, the gate structure including a high-k dielectric layer; a gate electrode over the high-k dielectric layer; a conductive cap over and in contact with the high-k dielectric layer and the gate electrode, a top surface of the conductive cap being convex; and first gate spacers on opposite sides of the gate structure, the high-k dielectric layer and the conductive cap extending between opposite sidewalls of the first gate spacers.
    Type: Application
    Filed: April 27, 2022
    Publication date: January 26, 2023
    Inventors: Li-Wei Yin, Yun-Chen Wu, Tzu-Wen Pan, Jih-Sheng Yang, Yu-Hsien Lin, Ryan Chia-Jen Chen
  • Publication number: 20220384269
    Abstract: Methods of cutting gate structures and fins, and structures formed thereby, are described. In an embodiment, a substrate includes first and second fins and an isolation region. The first and second fins extend longitudinally parallel, with the isolation region disposed therebetween. A gate structure includes a conformal gate dielectric over the first fin and a gate electrode over the conformal gate dielectric. A first insulating fill structure abuts the gate structure and extends vertically from a level of an upper surface of the gate structure to at least a surface of the isolation region. No portion of the conformal gate dielectric extends vertically between the first insulating fill structure and the gate electrode. A second insulating fill structure abuts the first insulating fill structure and an end sidewall of the second fin. The first insulating fill structure is disposed laterally between the gate structure and the second insulating fill structure.
    Type: Application
    Filed: August 9, 2022
    Publication date: December 1, 2022
    Inventors: Ryan Chia-Jen Chen, Cheng-Chung Chang, Shao-Hua Hsu, Yu-Hsien Lin, Ming-Ching Chang, Li-Wei Yin, Tzu-Wen Pan, Yi-Chun Chen
  • Publication number: 20220365719
    Abstract: A data storage device includes a memory device and a controller coupled to the memory device. The memory device is arranged in a plurality of logical planes and the controller is configured to write log data and user data to separate planes within the memory device, such that the log data and user data are isolated from each other on separate planes. The controller is configured to read log data from one plane and user data on another plane simultaneously, where the log data and the user data are isolated from each other on separate planes.
    Type: Application
    Filed: May 17, 2021
    Publication date: November 17, 2022
    Inventors: Chao SUN, Xinde HU, Yongke SUN, Wen PAN
  • Patent number: 11502076
    Abstract: Methods of cutting gate structures and fins, and structures formed thereby, are described. In an embodiment, a substrate includes first and second fins and an isolation region. The first and second fins extend longitudinally parallel, with the isolation region disposed therebetween. A gate structure includes a conformal gate dielectric over the first fin and a gate electrode over the conformal gate dielectric. A first insulating fill structure abuts the gate structure and extends vertically from a level of an upper surface of the gate structure to at least a surface of the isolation region. No portion of the conformal gate dielectric extends vertically between the first insulating fill structure and the gate electrode. A second insulating fill structure abuts the first insulating fill structure and an end sidewall of the second fin. The first insulating fill structure is disposed laterally between the gate structure and the second insulating fill structure.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: November 15, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ryan Chia-Jen Chen, Cheng-Chung Chang, Shao-Hua Hsu, Yu-Hsien Lin, Ming-Ching Chang, Li-Wei Yin, Tzu-Wen Pan, Yi-Chun Chen
  • Publication number: 20220359376
    Abstract: An integrated circuit structure includes a substrate, a transistor, a first dielectric layer, a metal contact, a first low-k dielectric layer, a second dielectric layer, and a first metal feature. The transistor is over the substrate. The first dielectric layer is over the transistor. The metal contact is in the first dielectric layer and electrically connected to the transistor. The first low-k dielectric layer is over the first dielectric layer. The second dielectric layer is over the first low-k dielectric layer and has a dielectric constant higher than a dielectric constant of the first low-k dielectric layer. The first metal feature extends through both second dielectric layer and the first low-k dielectric layer to the metal contact.
    Type: Application
    Filed: October 1, 2021
    Publication date: November 10, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi-Wen PAN, Chung-Chi KO
  • Publication number: 20220262691
    Abstract: A semiconductor package includes a package substrate having a top surface and a bottom surface, and a stiffener ring mounted on the top surface of the package substrate. The stiffener ring includes a reinforcement rib that is coplanar with the stiffener ring on the top surface of the package substrate. At least two compartments are defined by the stiffener ring and the reinforcement rib. At least two individual chip packages are mounted on chip mounting regions within the at least two compartments, respectively, thereby constituting a package array on the package substrate.
    Type: Application
    Filed: March 2, 2022
    Publication date: August 18, 2022
    Applicant: Media Tek Inc.
    Inventors: Chi-Wen Pan, I-Hsuan Peng, Sheng-Liang Kuo, Yi-Jou Lin, Tai-Yu Chen
  • Publication number: 20220221508
    Abstract: The present disclosure provides a probing apparatus for semiconductor devices using pressurized fluid to control the testing conditions. The probing apparatus includes a housing configured to define a testing chamber; a device holder positioned on the housing and configured to hold and support at least one device under test; a platen positioned on the housing and configured to retain at least one probe; a card holder positioned on the platen and configured to hold a probe card including the probe; and at least one flow line positioned in the card holder. The flow line is configured to flow a fluid therein to adjust the temperature of the device under test.
    Type: Application
    Filed: January 11, 2021
    Publication date: July 14, 2022
    Inventors: Choon Leong Lou, Chen-Wen Pan, Jung-Chieh Liu
  • Patent number: 11302592
    Abstract: A semiconductor package includes a package substrate having a top surface and a bottom surface, and a stiffener ring mounted on the top surface of the package substrate. The stiffener ring includes a reinforcement rib that is coplanar with the stiffener ring on the top surface of the package substrate. At least two compartments are defined by the stiffener ring and the reinforcement rib. At least two individual chip packages are mounted on chip mounting regions within the at least two compartments, respectively, thereby constituting a package array on the package substrate.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: April 12, 2022
    Assignee: MediaTek Inc.
    Inventors: Chi-Wen Pan, I-Hsuan Peng, Sheng-Liang Kuo, Yi-Jou Lin, Tai-Yu Chen
  • Publication number: 20220059577
    Abstract: A stretchable pixel array substrate, including a base and a component layer, is provided. The base has multiple first openings and multiple second openings. Each of the first openings has a first opening extending direction. Each of the second openings has a second opening extending direction. The first opening extending direction and the second opening extending direction are different. The first openings and the second openings are alternately arranged in a first direction and a second direction to define multiple islands and multiple bridges of the base. The component layer is disposed on the base and includes multiple island portions and multiple bridge portions. The island potions have multiple pixel structures and are respectively disposed on the islands of the base. The bridge portions have conductive wires and are respectively disposed on the bridges of the base. The conductive wires are electrically connected to the pixel structures.
    Type: Application
    Filed: July 29, 2021
    Publication date: February 24, 2022
    Applicant: Au Optronics Corporation
    Inventors: Yun-Wen Pan, Kung-Cheng Lin
  • Patent number: 11164649
    Abstract: A test method for a memory device including the following steps is provided. A redundancy function of the memory device is disable and a first data is written to a first memory array. The redundancy function of the memory device is enabled and a second data is written to a second memory array. The first data and the second data are complementary. A redundancy information is read from a non-volatile memory block according to a margin condition and the second memory array is read based on the redundancy information to obtain a first readout data. A first test result is generated by comparing the second data and the first readout data. The second memory array includes a part of memory cells of the first memory array and at least one redundancy memory cell.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: November 2, 2021
    Assignee: Winbond Electronics Corp.
    Inventor: Tzi-Wen Pan
  • Publication number: 20210327527
    Abstract: A test method for a memory device including the following steps is provided. A redundancy function of the memory device is disable and a first data is written to a first memory array. The redundancy function of the memory device is enabled and a second data is written to a second memory array. The first data and the second data are complementary. A redundancy information is read from a non-volatile memory block according to a margin condition and the second memory array is read based on the redundancy information to obtain a first readout data. A first test result is generated by comparing the second data and the first readout data. The second memory array includes a part of memory cells of the first memory array and at least one redundancy memory cell.
    Type: Application
    Filed: April 20, 2020
    Publication date: October 21, 2021
    Applicant: Winbond Electronics Corp.
    Inventor: Tzi-Wen Pan
  • Publication number: 20210280695
    Abstract: Methods of cutting fins, and structures formed thereby, are described. In an embodiment, a structure includes a first fin and a second fin on a substrate, and a fin cut-fill structure disposed between the first fin and the second fin. The first fin and the second fin are longitudinally aligned. The fin cut-fill structure includes a liner on a first sidewall of the first fin, and an insulating fill material on a sidewall of the liner and on a second sidewall of the first fin. The liner is further on a surface of the first fin between the first sidewall of the first fin and the second sidewall of the first fin.
    Type: Application
    Filed: May 20, 2021
    Publication date: September 9, 2021
    Inventors: Ryan Chia-Jen Chen, Li-Wei Yin, Tzu-Wen Pan, Cheng-Chung Chang, Shao-Hua Hsu, Yi-Chun Chen, Yu-Hsien Lin, Ming-Ching Chang