Patents by Inventor Wenbin Jiang

Wenbin Jiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6632030
    Abstract: A method, apparatus, and system to couple photons between optoelectronic devices and small form factor fiber connectors. An optical block includes refraction surfaces to narrow the distance between two or more light transmission paths through the optical block thereby enabling a module to be coupled to closely spaced fiber optic connectors. In one embodiment, light from a first light path through the optical block is refracted in the direction of a second light path through the optical block. Prior to intersecting the second light path, the light from the first light path is refracted again to provide the first light path closer to, but independent of, the second light path.
    Type: Grant
    Filed: May 17, 2001
    Date of Patent: October 14, 2003
    Assignee: E20 Communications, Inc.
    Inventors: Wenbin Jiang, Edwin D. Dair, Cheng Ping Wei
  • Patent number: 6611544
    Abstract: Semiconductor lasers having a narrow bandwidth distributed Bragg reflector (DBR). The narrow bandwidth distributed Bragg reflector reflects photons over a narrow wavelength range for amplification within the laser cavity. Photons outside the narrow wavelength range are not reflected back into the laser cavity and are therefore not amplified. The narrow bandwidth distributed Bragg reflector can be formed of semiconductor materials or dielectric materials. The narrow bandwidth distributed Bragg reflector is included as part of folded cavity surface emitting lasers and edge emitting lasers. Photons within the narrow wavelength range of the narrow bandwidth distributed Bragg reflector reflects are of a relatively long wavelength to improve efficiency of communication over fiber optic cables.
    Type: Grant
    Filed: April 11, 2000
    Date of Patent: August 26, 2003
    Assignee: E20 Communications, Inc.
    Inventors: Wenbin Jiang, Dan Dapkus, Hsing-Chung Lee
  • Publication number: 20030157739
    Abstract: A method of fabricating a vertical cavity surface emitting laser comprising the steps of epitaxially growing a first DBR positioned on a substrate wherein the first DBR is epitaxially grown using MOCVD. The substrate is orientated in an off-axis crystallographic direction which increases the radiative efficiency. A first cladding layer is positioned on the first DBR and an active region is epitaxially grown on the first cladding layer wherein the active region is epitaxially grown using plasma assisted MBE. A second DBR is epitaxially grown on the second cladding layer wherein the second DBR is epitaxially grown using MOCVD. The active region is epitaxially grown using plasma assisted MBE to increase the mole fraction of nitrogen (N) incorporation. The DBR's are grown using MOCVD to improve the electrical performance.
    Type: Application
    Filed: October 25, 2002
    Publication date: August 21, 2003
    Inventors: Wenbin Jiang, Julian Cheng, Chan-Long Shieh, Hsing-Chung Lee
  • Patent number: 6607308
    Abstract: A fiber-optic module having a housing/shielding unit and a module chassis frame having optical, electrical and electro-optical components. The housing/shielding unit functions both as a protective outer housing and an electromagnetic shield. The housing/shielding unit includes forward fingers and backward fingers. The forward fingers provide an EMI seal around an opening in a bezel, face-plate, backplate, wall, or panel of a host system and thereby can ground the housing/shielding unit to a chassis ground. The backward fingers can contact host tabs of the host system and can also thereby ground the housing/shielding unit to a chassis ground. The module chassis frame may be formed of a conductive material and can be grounded as well through a host system faceplate or otherwise to the chassis ground.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: August 19, 2003
    Assignee: E20 Communications, Inc.
    Inventors: Edwin Dair, Wenbin Jiang, Cheng Ping Wei, Yong Peng Sim
  • Publication number: 20030152339
    Abstract: A fiber-optic module having a housing/shielding unit and a module chassis frame having optical, electrical and electro-optical components. The housing/shielding unit functions both as a protective outer housing and an electromagnetic shield. The housing/shielding unit includes forward fingers and backward fingers. The forward fingers provide an EMI seal around an opening in a bezel, face-plate, back-plate, wall, or panel of a host system and thereby can ground the housing/shielding unit to a chassis ground. The backward fingers can contact host tabs of the host system and can also thereby ground the housing/shielding unit to a chassis ground. The module chassis frame may be formed of a conductive material and can be grounded as well through a host system faceplate or otherwise to the chassis ground.
    Type: Application
    Filed: December 31, 2002
    Publication date: August 14, 2003
    Inventors: Edwin Dair, Wenbin Jiang, Cheng Ping Wei, Yong Peng Sim
  • Publication number: 20030152331
    Abstract: A fiber-optic module having a housing/shielding unit and a module chassis frame having optical, electrical and electro-optical components. The housing/shielding unit functions both as a protective outer housing and an electromagnetic shield. The housing/shielding unit includes forward fingers and backward fingers. The forward fingers provide an EMI seal around an opening in a bezel, face-plate, back-plate, wall, or panel of a host system and thereby can ground the housing/shielding unit to a chassis ground. The backward fingers can contact host tabs of the host system and can also thereby ground the housing/shielding unit to a chassis ground. The module chassis frame may be formed of a conductive material and can be grounded as well through a host system faceplate or otherwise to the chassis ground.
    Type: Application
    Filed: December 31, 2002
    Publication date: August 14, 2003
    Inventors: Edwin Dair, Wenbin Jiang, Cheng Ping Wei, Yong Peng Sim
  • Patent number: 6580741
    Abstract: An integrated optically pumped vertical cavity surface emitting laser (VCSEL) is formed by integrating an electrically pumped in-plane semiconductor laser and a vertical cavity surface emitting laser together with a beam steering element formed with the in-plane semiconductor laser. The in-plane semiconductor laser can be a number of different types of in-plane lasers including an edge emitting laser, an in-plane surface emitting laser, or a folded cavity surface emitting laser. The in-plane semiconductor laser optically pumps the VCSEL to cause it to lase. The in-plane semiconductor laser is designed to emit photons of relatively short wavelengths while the VCSEL is designed to emit photons of relatively long wavelengths. The in-plane semiconductor laser and the VCSEL can be coupled together in a number of ways including atomic bonding, wafer bonding, metal bonding, epoxy glue or other well know semiconductor bonding techniques. The beam steering element can be an optical grating or a mirrored surface.
    Type: Grant
    Filed: June 18, 2002
    Date of Patent: June 17, 2003
    Assignee: E2O Communications, Inc.
    Inventors: Wenbin Jiang, Hsing-Chung Lee, Yong Cheng
  • Patent number: 6556610
    Abstract: Semiconductor lasers are formed by integrating an electrically pumped semiconductor laser, a beam steering element and a vertical cavity surface emitting laser (VCSEL) together. The electrically pumped semiconductor laser is modulated to modulate a pump beam of photons at a first wavelength. The beam steering element directs the pump beam to the VCSEL to provide optical pumping. The VCSEL receives the pump beam of photons at the first wavelength and is stimulated to emit photons of a laser beam at a second wavelength longer than the first. In embodiments, index guiding is provided in the VCSEL to improve the optical pumping and emission efficiencies when the pump beam is modulated at high frequencies. Embodiments of the beam steering element include a silicon bench, a polymer element, and a facet included in the edge emitting laser and an external mirror. Embodiments of index guiding include an air gap to form a mesa and an oxide confinement ring shaped layer.
    Type: Grant
    Filed: April 12, 2001
    Date of Patent: April 29, 2003
    Assignee: E20 Communications, Inc.
    Inventors: Wenbin Jiang, Chan-Long Shieh, Xiqing Sun, Jeff Tsao, Hsing-Chung Lee
  • Patent number: 6553048
    Abstract: Modulated integrated optically pumped vertical cavity surface emitting lasers are formed by integrating an electrically pumped semiconductor laser and a vertical cavity surface emitting laser (VCSEL) together with a means of direct modulation of the electrically pumped semiconductor laser. In the preferred embodiments, the electrically pumped semiconductor laser is a type of folded cavity surface emitting laser (FCSEL). In a number of embodiments, the FCSEL is partitioned into two sections by a gap in material layers. In these embodiments, one section of the FCSEL is biased so as to maintain the generation of photons at a constant power level to pump the optically pumped VCSEL while the second section of the FCSEL is used for modulation and causes the optically pumped VCSEL to be modulated above the threshold. In another embodiment, an electric-absorption modulator is sandwiched between an electrically pumped FCSEL and an optically pumped VCSEL.
    Type: Grant
    Filed: October 24, 2001
    Date of Patent: April 22, 2003
    Assignee: E2O Communications, Inc.
    Inventors: Wenbin Jiang, Hsing-Chung Lee
  • Publication number: 20030031430
    Abstract: A method, apparatus, and system to couple photons between optoelectronic devices and small form factor fiber connectors. An optical block includes refraction surfaces to narrow the distance between two or more light transmission paths through the optical block thereby enabling a module to be coupled to closely spaced fiber optic connectors. In one embodiment, light from a first light path through the optical block is refracted in the direction of a second light path through the optical block. Prior to intersecting the second light path, the light from the first light path is refracted again to provide the first light path closer to, but independent of, the second light path.
    Type: Application
    Filed: May 17, 2001
    Publication date: February 13, 2003
    Inventors: Wenbin Jiang, Edwin D. Dair, Cheng Ping Wei
  • Publication number: 20030020986
    Abstract: Pluggable fiber optic modules having a receive printed circuit board and a transmit printed circuit board perpendicular with an interface printed circuit board with an edge connection. The edge connection of the interface printed circuit board to plug into and out from an edge connector of a host printed circuit board. A transmitter optoelectronic device is coupled to the transmit printed circuit board. A receiver optoelectronic device is coupled to the receive printed circuit board. The pluggable fiber optic modules may further include a support base, a nose receptacle, and an alignment plate.
    Type: Application
    Filed: April 8, 2002
    Publication date: January 30, 2003
    Inventors: Ron Cheng Chuan Pang, Yong Peng Sim, Edwin Dair, Wenbin Jiang, Cheng Ping Wei
  • Publication number: 20030007538
    Abstract: An integrated optically pumped vertical cavity surface emitting laser (VCSEL) is formed by integrating an electrically pumped in-plane semiconductor laser and a vertical cavity surface emitting laser together with a beam steering element formed with the in-plane semiconductor laser. The in-plane semiconductor laser can be a number of different types of in-plane lasers including an edge emitting laser, an in-plane surface emitting laser, or a folded cavity surface emitting laser. The in-plane semiconductor laser optically pumps the VCSEL to cause it to lase. The in-plane semiconductor laser is designed to emit photons of relatively short wavelengths while the VCSEL is designed to emit photons of relatively long wavelengths. The in-plane semiconductor laser and the VCSEL can be coupled together in a number of ways including atomic bonding, wafer bonding, metal bonding, epoxy glue or other well know semiconductor bonding techniques. The beam steering element can be an optical grating or a mirrored surface.
    Type: Application
    Filed: June 18, 2002
    Publication date: January 9, 2003
    Inventors: Wenbin Jiang, Hsing-Chung Lee, Yong Cheng
  • Publication number: 20030002545
    Abstract: A tunable vertical cavity surface emitting laser (VCSEL) is formed by providing a gap in its laser cavity that can be adjusted to vary the gap distance therein to change the resonance of the cavity and the wavelength of photons that are generated. A pump laser provides a pump source of photons that are coupled into the laser cavity of the vertical cavity surface emitting laser. The vertical cavity surface emitting laser is coupled to a piezo-electric submount to form the gap in the laser cavity. The gap distance is adjusted to tune the vertical cavity surface emitting laser around its center wavelength by applying a voltage (i.e., an electric field) across the piezo-electric submount which causes mechanical stress therein. Alternate embodiments are disclosed including a joined unit of elements to form the tunable vertical cavity surface emitting laser as well as a system of elements to form the tunable vertical cavity surface emitting laser.
    Type: Application
    Filed: July 2, 2001
    Publication date: January 2, 2003
    Inventors: Wenbin Jiang, Hsing-Chung Lee
  • Patent number: 6498875
    Abstract: The invention is a method and apparatus for transmitting the light from one or more transmitting arrays of optical devices to one or more receiving arrays of optical devices where each optical device in a transmitting array transmits an initially diverging light beam to a single optical device in a receiving array. Each optical device in a receiving array receives a converging light beam from a single optical device in a transmitting array. The method consists of imaging the optical devices in one or more transmitting arrays on the optical devices in one or more receiving arrays. The light rays from each optical device in a transmitting array are superimposed on the light rays from the other optical devices in the transmitting array while traversing a common volume.
    Type: Grant
    Filed: May 1, 2000
    Date of Patent: December 24, 2002
    Assignee: E20 Communications Inc.
    Inventors: Wenbin Jiang, Tom D. Milster
  • Patent number: 6489175
    Abstract: A method of fabricating a vertical cavity surface emitting laser comprising the steps of epitaxially growing a first DBR positioned on a substrate wherein the first DBR is epitaxially grown using MOCVD. The substrate is orientated in an off-axis crystallographic direction which increases the radiative efficiency. A first cladding layer is positioned on the first DBR and an active region is epitaxially grown on the first cladding layer wherein the active region is epitaxially grown using plasma assisted MBE. A second DBR is epitaxially grown on the second cladding layer wherein the second DBR is epitaxially grown using MOCVD. The active region is epitaxially grown using plasma assisted MBE to increase the mole fraction of nitrogen (N) incorporation. The DBR's are grown using MOCVD to improve the electrical performance.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: December 3, 2002
    Inventors: Wenbin Jiang, Julian Cheng, Chan-Long Shieh, Hsing-Chung Lee
  • Publication number: 20020159491
    Abstract: A surface emitting diode, such as a laser, including an active region positioned between first and second semiconductor layers and extending longitudinally. The active region and at least portions of the first and second semiconductor layers defining first and second facets positioned at opposite ends of the length with the first facet defining a light output for the active region. The active region is adjusted to emit a single mode of light. A reflective element is positioned adjacent to the first facet and at an angle with the first facet for receiving light output from the active region and directing the light perpendicular to the active region.
    Type: Application
    Filed: April 26, 2001
    Publication date: October 31, 2002
    Inventors: Wenbin Jiang, Chan-Long Shieh, Xiqing Sun, Hsing-Chung Lee
  • Publication number: 20020110336
    Abstract: A fiber-optic module having a housing/shielding unit and a module chassis frame having optical, electrical and electro-optical components. The housing/shielding unit functions both as a protective outer housing and an electromagnetic shield. The housing/shielding unit includes forward fingers for a flush mounting in one embodiment and backward fingers for an extended mounting in another embodiment. The fingers can contact a bezel, face-plate or wall of host system to ground the housing/shielding unit to a chassis ground. The module chassis frame may be formed of a conductive material and grounded as well through a host system faceplate or otherwise to the chassis ground. A transmit ground for transmitter components and a receive ground for receiver components are isolated from the chassis ground.
    Type: Application
    Filed: February 12, 2001
    Publication date: August 15, 2002
    Inventors: Edwin Dair, Wenbin Jiang, Cheng Ping Wei, Yong Peng Sim
  • Publication number: 20020110338
    Abstract: A fiber-optic module having a housing/shielding unit and a module chassis frame having optical, electrical and electro-optical components. The housing/shielding unit functions both as a protective outer housing and an electromagnetic shield. The housing/shielding unit includes forward fingers and backward fingers. The forward fingers provide an EMI seal around an opening in a bezel, face-plate, backplate, wall, or panel of a host system and thereby can ground the housing/shielding unit to a chassis ground. The backward fingers can contact host tabs of the host system and can also thereby ground the housing/shielding unit to a chassis ground. The module chassis frame may be formed of a conductive material and can be grounded as well through a host system faceplate or otherwise to the chassis ground.
    Type: Application
    Filed: August 22, 2001
    Publication date: August 15, 2002
    Inventors: Edwin Dair, Wenbin Jiang, Cheng Ping Wei, Yong Peng Sim
  • Patent number: 6424669
    Abstract: An integrated optically pumped vertical cavity surface emitting laser (VCSEL) is formed by integrating an electrically pumped in-plane semiconductor laser and a vertical cavity surface emitting laser together with a beam steering element formed with the in-plane semiconductor laser. The in-plane semiconductor laser can be a number of different types of in-plane lasers including an edge emitting laser, an in-plane surface emitting laser, or a folded cavity surface emitting laser. The in-plane semiconductor laser optically pumps the VCSEL to cause it to lase. The in-plane semiconductor laser is designed to emit photons of relatively short wavelengths while the VCSEL is designed to emit photons of relatively long wavelengths. The in-plane semiconductor laser and the VCSEL can be coupled together in a number of ways including atomic bonding, wafer bonding, metal bonding, epoxy glue or other well know semiconductor bonding techniques. The beam steering element can be an optical grating or a mirrored surface.
    Type: Grant
    Filed: October 29, 1999
    Date of Patent: July 23, 2002
    Assignee: E20 Communications, Inc.
    Inventors: Wenbin Jiang, Hsing-Chung Lee, Yong Cheng
  • Publication number: 20020076173
    Abstract: Fiber optic transmitter and receiver electrical elements are implemented on separate vertical boards in fiber optic modules. A single optical block implements lenses and reflecting surfaces to minimize manufacturing costs. In one embodiment the receiver and transmitter are mounted to receive and transmit vertical boards respectively to nearly face each other but being offset to avoid optical cross talk. In a second embodiment, receiver and transmitter are mounted parallel with the printed circuit boards to save additional space. The vertical boards have ground planes to minimize electrical cross talk. A shielded housing provides further shielding for EMI. Manufacturing steps of the fiber optic transceiver are disclosed which provide reduced manufacturing costs.
    Type: Application
    Filed: December 20, 2000
    Publication date: June 20, 2002
    Applicant: E2O Communications, Inc.
    Inventors: WENBIN JIANG , Cheng Ping Wei