Patents by Inventor Weng Chang

Weng Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240153952
    Abstract: In an embodiment, a device includes: a channel region; a gate dielectric layer on the channel region; a first work function tuning layer on the gate dielectric layer, the first work function tuning layer including a n-type work function metal; a barrier layer on the first work function tuning layer; a second work function tuning layer on the barrier layer, the second work function tuning layer including a p-type work function metal, the p-type work function metal different from the n-type work function metal; and a fill layer on the second work function tuning layer.
    Type: Application
    Filed: January 4, 2024
    Publication date: May 9, 2024
    Inventors: Hsin-Yi Lee, Weng Chang, Chi On Chui
  • Publication number: 20240120355
    Abstract: Implementations of a cover for an image sensor may include an optically transmissive portion and a black mask layer applied as a strip adjacent a perimeter of a largest planar surface of the optically transmissive portion. The first edge of the strip closest to the perimeter may be separated from the perimeter by a predetermined distance.
    Type: Application
    Filed: September 25, 2023
    Publication date: April 11, 2024
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Gregg BARDEL, Shih-Chang TAI, Shunsuke YASUDA, Weng-Jin WU
  • Patent number: 11955528
    Abstract: Semiconductor devices, FinFET devices and methods of forming the same are disclosed. One of the semiconductor devices includes a substrate and a gate strip disposed over the substrate. The gate strip includes a high-k layer disposed over the substrate, an N-type work function metal layer disposed over the high-k layer, and a barrier layer disposed over the N-type work function metal layer. The barrier layer includes at least one first film containing TiAlN, TaAlN or AlN.
    Type: Grant
    Filed: October 11, 2022
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsin-Yi Lee, Cheng-Lung Hung, Weng Chang, Chi-On Chui
  • Publication number: 20240113183
    Abstract: Methods for tuning effective work functions of gate electrodes in semiconductor devices and semiconductor devices formed by the same are disclosed. In an embodiment, a semiconductor device includes a channel region over a semiconductor substrate; a gate dielectric layer over the channel region; and a gate electrode over the gate dielectric layer, the gate electrode including a first work function metal layer over the gate dielectric layer, the first work function metal layer including aluminum (Al); a first work function tuning layer over the first work function metal layer, the first work function tuning layer including aluminum tungsten (AlW); and a fill material over the first work function tuning layer.
    Type: Application
    Filed: November 30, 2023
    Publication date: April 4, 2024
    Inventors: Hsin-Yi Lee, Cheng-Lung Hung, Weng Chang, Chi On Chui
  • Patent number: 11948981
    Abstract: A method includes forming a dummy gate stack over a semiconductor region, forming epitaxial source/drain regions on opposite sides of the dummy gate stack, removing the dummy gate stack to form a trench, depositing a gate dielectric layer extending into the trench, and depositing a work-function layer over the gate dielectric layer. The work-function layer comprises a seam therein. A silicon-containing layer is deposited to fill the seam. A planarization process is performed to remove excess portions of the silicon-containing layer, the work-function layer, and the gate dielectric layer. Remaining portions of the silicon-containing layer, the work-function layer, and the gate dielectric layer form a gate stack.
    Type: Grant
    Filed: August 18, 2021
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsin-Yi Lee, Weng Chang, Chi On Chui
  • Publication number: 20240097005
    Abstract: Disclosed is a semiconductor device and semiconductor fabrication method. A semiconductor device includes: a gate structure over a semiconductor substrate, having a high-k dielectric layer, a p-type work function layer, an n-type work function layer, a dielectric anti-reaction layer, and a glue layer; and a continuous metal cap over the gate structure formed by metal material being deposited over the gate structure, a portion of the anti-reaction layer being selectively removed, and additional metal material being deposited over the gate structure. A semiconductor fabrication method includes: receiving a gate structure; flattening the top layer of the gate structure; precleaning and pretreating the surface of the gate structure; depositing metal material over the gate structure to form a discontinuous metal cap; selectively removing a portion of the anti-reaction layer; depositing additional metal material over the gate structure to create a continuous metal cap; and containing growth of the metal cap.
    Type: Application
    Filed: January 12, 2023
    Publication date: March 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Hang Chiu, Jui-Yang Wu, Kuan-Ting Liu, Weng Chang
  • Patent number: 11935937
    Abstract: A semiconductor device includes a fin protruding above a substrate; source/drain regions over the fin; nanosheets between the source/drain regions; and a gate structure over the fin and between the source/drain regions. The gate structure includes: a gate dielectric material around each of the nanosheets; a first liner material around the gate dielectric material; a work function material around the first liner material; a second liner material around the work function material; and a gate electrode material around at least portions of the second liner material.
    Type: Grant
    Filed: January 17, 2022
    Date of Patent: March 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsin-Yi Lee, Weng Chang, Chi On Chui
  • Publication number: 20240063061
    Abstract: A method includes forming a gate dielectric on a semiconductor region, depositing a work-function layer over the gate dielectric, depositing a silicon layer over the work-function layer, and depositing a glue layer over the silicon layer. The work-function layer, the silicon layer, and the glue layer are in-situ deposited. The method further includes depositing a filling-metal over the glue layer; and performing a planarization process, wherein remaining portions of the glue layer, the silicon layer, and the work-function layer form portions of a gate electrode.
    Type: Application
    Filed: November 1, 2023
    Publication date: February 22, 2024
    Inventors: Hsin-Han Tsai, Chung-Chiang Wu, Cheng-Lung Hung, Weng Chang, Chi On Chui
  • Patent number: 11901362
    Abstract: In an embodiment, a device includes: a channel region; a gate dielectric layer on the channel region; a first work function tuning layer on the gate dielectric layer, the first work function tuning layer including a n-type work function metal; a barrier layer on the first work function tuning layer; a second work function tuning layer on the barrier layer, the second work function tuning layer including a p-type work function metal, the p-type work function metal different from the n-type work function metal; and a fill layer on the second work function tuning layer.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: February 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsin-Yi Lee, Weng Chang, Chi On Chui
  • Publication number: 20240021697
    Abstract: A semiconductor device and a method of forming the same are provided. The semiconductor device includes a gate stack over an active region of a substrate. The gate stack includes a gate dielectric layer and a first work function layer over the gate dielectric layer. The first work function layer includes a plurality of first layers and a plurality of second layers arranged in an alternating manner over the gate dielectric layer. The plurality of first layers include a first material. The plurality of second layers include a second material different from the first material.
    Type: Application
    Filed: August 7, 2023
    Publication date: January 18, 2024
    Inventors: Hsin-Yi Lee, Weng Chang, Chi On Chui
  • Publication number: 20240021680
    Abstract: A method includes forming a dummy gate stack over a semiconductor region, forming epitaxial source/drain regions on opposite sides of the dummy gate stack, removing the dummy gate stack to form a trench, depositing a gate dielectric layer extending into the trench, and depositing a work-function layer over the gate dielectric layer. The work-function layer comprises a seam therein. A silicon-containing layer is deposited to fill the seam. A planarization process is performed to remove excess portions of the silicon-containing layer, the work-function layer, and the gate dielectric layer. Remaining portions of the silicon-containing layer, the work-function layer, and the gate dielectric layer form a gate stack.
    Type: Application
    Filed: August 9, 2023
    Publication date: January 18, 2024
    Inventors: Hsin-Yi Lee, Weng Chang, Chi On Chui
  • Publication number: 20240014279
    Abstract: A method of forming a semiconductor device includes forming a fin over a substrate, the fin comprising alternately stacking first semiconductor layers and second semiconductor layers, removing the first semiconductor layers to form spaces each between the second semiconductor layers, forming a gate dielectric layer wrapping around each of the second semiconductor layers, forming a fluorine-containing layer on the gate dielectric layer, performing an anneal process to drive fluorine atoms from the fluorine-containing layer into the gate dielectric layer, removing the fluorine-containing layer, and forming a metal gate on the gate dielectric layer.
    Type: Application
    Filed: July 5, 2022
    Publication date: January 11, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsin-Yi LEE, Shan-Mei LIAO, Kuo-Feng YU, Da-Yuan LEE, Weng CHANG, Chi On CHUI
  • Patent number: 11855163
    Abstract: Methods for tuning effective work functions of gate electrodes in semiconductor devices and semiconductor devices formed by the same are disclosed. In an embodiment, a semiconductor device includes a channel region over a semiconductor substrate; a gate dielectric layer over the channel region; and a gate electrode over the gate dielectric layer, the gate electrode including a first work function metal layer over the gate dielectric layer, the first work function metal layer including aluminum (Al); a first work function tuning layer over the first work function metal layer, the first work function tuning layer including aluminum tungsten (AlW); and a fill material over the first work function tuning layer.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsin-Yi Lee, Cheng-Lung Hung, Weng Chang, Chi On Chui
  • Patent number: 11855098
    Abstract: In an embodiment, a method includes: forming a gate dielectric layer on an interface layer; forming a doping layer on the gate dielectric layer, the doping layer including a dipole-inducing element; annealing the doping layer to drive the dipole-inducing element through the gate dielectric layer to a first side of the gate dielectric layer adjacent the interface layer; removing the doping layer; forming a sacrificial layer on the gate dielectric layer, a material of the sacrificial layer reacting with residual dipole-inducing elements at a second side of the gate dielectric layer adjacent the sacrificial layer; removing the sacrificial layer; forming a capping layer on the gate dielectric layer; and forming a gate electrode layer on the capping layer.
    Type: Grant
    Filed: November 14, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Yen Tsai, Ming-Chi Huang, Zoe Chen, Wei-Chin Lee, Cheng-Lung Hung, Da-Yuan Lee, Weng Chang, Ching-Hwanq Su
  • Patent number: 11842928
    Abstract: A method includes forming a gate dielectric on a semiconductor region, depositing a work-function layer over the gate dielectric, depositing a silicon layer over the work-function layer, and depositing a glue layer over the silicon layer. The work-function layer, the silicon layer, and the glue layer are in-situ deposited. The method further includes depositing a filling-metal over the glue layer; and performing a planarization process, wherein remaining portions of the glue layer, the silicon layer, and the work-function layer form portions of a gate electrode.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: December 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsin-Han Tsai, Chung-Chiang Wu, Cheng-Lung Hung, Weng Chang, Chi On Chui
  • Publication number: 20230378308
    Abstract: In an embodiment, a device includes: a p-type transistor including: a first channel region; a first gate dielectric layer on the first channel region; a tungsten-containing work function tuning layer on the first gate dielectric layer; and a first fill layer on the tungsten-containing work function tuning layer; and an n-type transistor including: a second channel region; a second gate dielectric layer on the second channel region; a tungsten-free work function tuning layer on the second gate dielectric layer; and a second fill layer on the tungsten-free work function tuning layer.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 23, 2023
    Inventors: Hsin-Yi Lee, Weng Chang, Chi On Chui
  • Patent number: 11824100
    Abstract: A semiconductor device and a method of forming the same are provided. The semiconductor device includes a gate stack over an active region of a substrate. The gate stack includes a gate dielectric layer and a first work function layer over the gate dielectric layer. The first work function layer includes a plurality of first layers and a plurality of second layers arranged in an alternating manner over the gate dielectric layer. The plurality of first layers include a first material. The plurality of second layers include a second material different from the first material.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: November 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsin-Yi Lee, Weng Chang, Chi On Chui
  • Publication number: 20230369132
    Abstract: The present disclosure provides a semiconductor device with a profiled work-function metal gate electrode. The semiconductor structure includes a metal gate structure formed in an opening of an insulating layer. The metal gate structure includes a gate dielectric layer, a barrier layer, a work-function metal layer between the gate dielectric layer and the barrier layer and a work-function adjustment layer over the barrier layer, wherein the work-function metal has an ordered grain orientation. The present disclosure also provides a method of making a semiconductor device with a profiled work-function metal gate electrode.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 16, 2023
    Inventors: Da-Yuan LEE, Hung-Chin CHUNG, Hsien-Ming LEE, Kuan-Ting LIU, Syun-Ming JANG, Weng CHANG, Wei-Jen LO
  • Patent number: 11810961
    Abstract: In an embodiment, a device includes: a p-type transistor including: a first channel region; a first gate dielectric layer on the first channel region; a tungsten-containing work function tuning layer on the first gate dielectric layer; and a first fill layer on the tungsten-containing work function tuning layer; and an n-type transistor including: a second channel region; a second gate dielectric layer on the second channel region; a tungsten-free work function tuning layer on the second gate dielectric layer; and a second fill layer on the tungsten-free work function tuning layer.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: November 7, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsin-Yi Lee, Weng Chang, Chi On Chui
  • Patent number: 11804409
    Abstract: The present disclosure provides a semiconductor device with a profiled work-function metal gate electrode. The semiconductor structure includes a metal gate structure formed in an opening of an insulating layer. The metal gate structure includes a gate dielectric layer, a barrier layer, a work-function metal layer between the gate dielectric layer and the barrier layer and a work-function adjustment layer over the barrier layer, wherein the work-function metal has an ordered grain orientation. The present disclosure also provides a method of making a semiconductor device with a profiled work-function metal gate electrode.
    Type: Grant
    Filed: July 26, 2021
    Date of Patent: October 31, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Da-Yuan Lee, Hung-Chin Chung, Hsien-Ming Lee, Kuan-Ting Liu, Syun-Ming Jang, Weng Chang, Wei-Jen Lo