Patents by Inventor Weng Chang

Weng Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230343834
    Abstract: Ruthenium of a metal gate (MG) and/or a middle end of line (MEOL) structure is annealed to reduce, or even eliminate, seams after the ruthenium is deposited. Because the annealing reduces (or removes) seams in deposited ruthenium, electrical performance is increased because resistivity of the MG and/or the MEOL structure is decreased. Additionally, for MGs, the annealing generates a more even deposition profile, which results in a timed etching process producing a uniform gate height. As a result, more of the MGs will be functional after etching, which increases yield during production of the electronic device.
    Type: Application
    Filed: April 22, 2022
    Publication date: October 26, 2023
    Inventors: Hsin-Han TSAI, Hsiang-Ju LIAO, Yi-Lun LI, Cheng-Lung HUNG, Weng CHANG, Chi On CHUI, Jo-Chun HUNG, Chih-Wei LEE, Chia-Wei CHEN
  • Publication number: 20230343822
    Abstract: In an embodiment, a device includes: a first nanostructure; a gate dielectric layer around the first nanostructure; a first p-type work function tuning layer on the gate dielectric layer; a dielectric barrier layer on the first p-type work function tuning layer; and a second p-type work function tuning layer on the dielectric barrier layer, the dielectric barrier layer being thinner than the first p-type work function tuning layer and the second p-type work function tuning layer.
    Type: Application
    Filed: July 19, 2022
    Publication date: October 26, 2023
    Inventors: Hsin-Yi Lee, Ji-Cheng Chen, Weng Chang, Chi On Chui
  • Publication number: 20230335551
    Abstract: Semiconductor devices and methods of manufacturing semiconductor devices with differing threshold voltages are provided. In embodiments the threshold voltages of individual semiconductor devices are tuned through the deposition, diffusion, and removal of dipole materials in order to provide different dipole regions within different transistors. These different dipole regions cause the different transistors to have different threshold voltages.
    Type: Application
    Filed: August 26, 2022
    Publication date: October 19, 2023
    Inventors: Yao-Teng Chuang, Kuei-Lun Lin, Te-Yang Lai, Da-Yuan Lee, Weng Chang, Chi On Chui
  • Publication number: 20230317790
    Abstract: In an embodiment, a semiconductor device is provided, which includes a first doped gate dielectric layer and a second doped gate dielectric layer, wherein the first doped gate dielectric layer and the second doped gate dielectric layer comprise a high-k material doped with a dipole dopant. The second doped gate dielectric layer has a second concentration of the first dipole dopant. The concentration of the dipole dopant in the first doped gate dielectric layer is greater than the concentration, and the concentration peak of the dipole dopant in the first doped gate dielectric layer is deeper than the concentration peak of the dipole dopant in the second doped gate dielectric layer. A first gate electrode over the first doped gate dielectric layer, and a second gate electrode over the second doped gate dielectric layer, the first gate electrode and the second gate electrode have a same width.
    Type: Application
    Filed: January 10, 2023
    Publication date: October 5, 2023
    Inventors: Yao-Teng Chuang, Kuei-Lun Lin, Te-Yang Lai, Da-Yuan Lee, Weng Chang, Chi On Chui
  • Publication number: 20230317859
    Abstract: A device includes a semiconductor substrate; a vertically stacked set of nanostructures over the semiconductor substrate; a first source/drain region; and a second source/drain region, wherein the vertically stacked set of nanostructures extends between the first source/drain region and the second source/drain region along a first cross-section. The device further includes a gate structure encasing the vertically stacked set of nanostructures along a second cross-section. The second cross-section is along a longitudinal axis of the gate structure. The gate structure comprises: a gate dielectric encasing each of the vertically stacked set of nanostructures; a first metal carbide layer over the gate dielectric; and a gate fill material over the first metal carbide layer. The first metal carbide layer comprises Ce, Hf, V, Nb, Sc, Y, or Mo.
    Type: Application
    Filed: June 6, 2022
    Publication date: October 5, 2023
    Inventors: Hsin-Yi Lee, Weng Chang, Chi On Chui
  • Publication number: 20230282729
    Abstract: A method includes forming a dummy gate stack over a semiconductor region, forming a source/drain region on a side of the dummy gate stack, removing the dummy gate stack to form a trench, forming a gate dielectric layer extending into the trench and on the semiconductor region, and depositing a fist work-function layer over the gate dielectric layer. The work-function layer comprises a metal selected from the group consisting of ruthenium, molybdenum, and combinations thereof. The method further includes depositing a conductive filling layer over the first work-function layer, and performing a planarization process to remove excess portions of the conductive filling layer, the first work-function layer, and the gate dielectric layer to form a gate stack.
    Type: Application
    Filed: May 9, 2022
    Publication date: September 7, 2023
    Inventors: Hsin-Yi Lee, Chun-Da Liao, Cheng-Lung Hung, Yan-Ming Tsai, Harry Chien, Huang-Lin Chao, Weng Chang, Chih-Wei Chang, Ming-Hsing Tsai, Chi On Chui
  • Publication number: 20230282712
    Abstract: A method includes forming a dummy gate stack over a semiconductor region, forming a source/drain region on a side of the dummy gate stack, removing the dummy gate stack to form a trench, with the semiconductor region being exposed to the trench, forming a gate dielectric layer extending into the trench, and depositing a work-function tuning layer on the gate dielectric layer. The work-function tuning layer comprises aluminum and carbon. The method further includes depositing a p-type work-function layer over the work-function tuning layer, and performing a planarization process to remove excess portions of the p-type work-function layer, the work-function tuning layer, and the gate dielectric layer to form a gate stack.
    Type: Application
    Filed: June 1, 2022
    Publication date: September 7, 2023
    Inventors: Hsin-Yi Lee, Yen-Tien Tung, Ji-Cheng Chen, Weng Chang, Chi On Chui
  • Publication number: 20230230977
    Abstract: A semiconductor device including a substrate, a first transistor and a second transistor is provided. The first transistor includes a first gate structure over the first semiconductor fin. The first gate structure includes a first high-k layer and a first work function layer sequentially disposed on the substrate, a material of the first work function layer may include metal carbide and aluminum, and a content of aluminum in the first work function layer is less than 10% atm. The second transistor includes a second gate structure. The second gate structure includes a second high-k layer and a second work function layer sequentially disposed on the substrate. A work function of the first work function layer is greater than a work function of the second work function layer.
    Type: Application
    Filed: March 27, 2023
    Publication date: July 20, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsin-Yi Lee, Cheng-Lung Hung, Weng Chang, Chi-On Chui
  • Patent number: 11699621
    Abstract: Embodiments described herein relate to a method for patterning a doping layer, such as a lanthanum containing layer, used to dope a high-k dielectric layer in a gate stack of a FinFET device for threshold voltage tuning. A blocking layer may be formed between the doping layer and a hard mask layer used to pattern the doping layer. In an embodiment, the blocking layer may include or be aluminum oxide (AlOx). The blocking layer can prevent elements from the hard mask layer from diffusing into the doping layer, and thus, can improve reliability of the devices formed. The blocking layer can also improve a patterning process by reducing patterning induced defects.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: July 11, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kun-Yu Lee, Huicheng Chang, Che-Hao Chang, Ching-Hwanq Su, Weng Chang, Xiong-Fei Yu
  • Publication number: 20230207663
    Abstract: A semiconductor device a method of forming the same are provided. The method includes forming a fin extending from a substrate. A dummy gate is formed over the fin. The dummy gate extends along sidewalls and a top surface of the fin. The dummy gate is removed to form a recess. A replacement gate is formed in the recess. Forming the replacement gate includes forming an interfacial layer along sidewalls and a bottom of the recess. A dipole layer is formed over the interfacial layer. The dipole layer includes metal atoms. Fluorine atoms are incorporated in the dipole layer. The fluorine atoms and the metal atoms are driven from the dipole layer into the interfacial layer. The dipole layer is removed.
    Type: Application
    Filed: May 10, 2022
    Publication date: June 29, 2023
    Inventors: Hsin-Yi Lee, Weng Chang, Chi On Chui
  • Patent number: 11646311
    Abstract: A semiconductor device including a substrate, a first transistor and a second transistor is provided. The first transistor includes a first gate structure over the first semiconductor fin. The first gate structure includes a first high-k layer and a first work function layer sequentially disposed on the substrate, a material of the first work function layer may include metal carbide and aluminum, and a content of aluminum in the first work function layer is less than 10% atm. The second transistor includes a second gate structure. The second gate structure includes a second high-k layer and a second work function layer sequentially disposed on the substrate. A work function of the first work function layer is greater than a work function of the second work function layer.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: May 9, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsin-Yi Lee, Cheng-Lung Hung, Weng Chang, Chi-On Chui
  • Publication number: 20230131688
    Abstract: Embodiments include a nanoFET device and method for forming the same, the nanoFET having channel regions which have been thinned during a gate replacement process to remove etching residue. In some embodiments, the channel regions become dog bone shaped. In some embodiments, the ends of the channel regions have vertical protrusions or horns resulting from a previous trimming process which is performed prior to depositing sidewall spacers.
    Type: Application
    Filed: June 6, 2022
    Publication date: April 27, 2023
    Inventors: Da-Yuan Lee, Weng Chang
  • Publication number: 20230106314
    Abstract: A method for providing a pre-deposition treatment (e.g., of a work-function layer) to accomplish work function tuning. In various embodiments, a gate dielectric layer is formed over a substrate, and a work-function metal layer is deposited over the gate dielectric layer. In some embodiments, a first in-situ process including a pre-treatment process of the work-function metal layer is performed. By way of example, the pre-treatment process removes an oxidized layer of the work-function metal layer to form a treated work-function metal layer. In some embodiments, after performing the first in-situ process, a second in-situ process including a deposition process of another metal layer over the treated work-function metal layer is performed.
    Type: Application
    Filed: December 7, 2022
    Publication date: April 6, 2023
    Inventors: Cheng-Yen TSAI, Hsin-Yi LEE, Chung-Chiang WU, Da-Yuan LEE, Weng CHANG, Ming-Hsing TSAI
  • Publication number: 20230073400
    Abstract: In an embodiment, a method includes: forming a gate dielectric layer on an interface layer; forming a doping layer on the gate dielectric layer, the doping layer including a dipole-inducing element; annealing the doping layer to drive the dipole-inducing element through the gate dielectric layer to a first side of the gate dielectric layer adjacent the interface layer; removing the doping layer; forming a sacrificial layer on the gate dielectric layer, a material of the sacrificial layer reacting with residual dipole-inducing elements at a second side of the gate dielectric layer adjacent the sacrificial layer; removing the sacrificial layer; forming a capping layer on the gate dielectric layer; and forming a gate electrode layer on the capping layer.
    Type: Application
    Filed: November 14, 2022
    Publication date: March 9, 2023
    Inventors: Cheng-Yen Tsai, Ming-Chi Huang, Zoe Chen, Wei-Chin Lee, Cheng-Lung Hung, Da-Yuan Lee, Weng Chang, Ching-Hwanq Su
  • Publication number: 20230069421
    Abstract: Semiconductor devices and methods of manufacturing the semiconductor devices are disclosed herein. The methods include forming nanostructures in a multilayer stack of semiconductor materials. An interlayer dielectric is formed surrounding the nanostructures and a gate dielectric is formed surrounding the interlayer dielectric. A first work function layer is formed over the gate dielectric. Once the first work function layer has been formed, an annealing process is performed on the resulting structure and oxygen is diffused from the gate dielectric into the interlayer dielectric. After performing the annealing process, a second work function layer is formed adjacent the first work function layer. A gate electrode stack of a nano-FET device is formed over the nanostructures by depositing a conductive fill material over the second work function layer.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Inventors: Hsin-Yi Lee, Weng Chang, Chi On Chui
  • Publication number: 20230063793
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip (IC). The IC comprises a substrate. A resistor overlies the substrate. The resistor comprises a resistive structure overlying the substrate. The resistor also comprises a conductive contact overlying and electrically coupled to the resistive structure. A capping structure is disposed over the conductive contact, wherein the capping structure extends laterally over an upper surface of the conductive contact and vertically along a first sidewall of the conductive contact, such that a lower surface of the capping structure is disposed below a lower surface of the conductive contact.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 2, 2023
    Inventors: Hung-Wen Hsu, Jiech-Fun Lu, Li-Weng Chang
  • Publication number: 20230032727
    Abstract: Semiconductor devices, FinFET devices and methods of forming the same are disclosed. One of the semiconductor devices includes a substrate and a gate strip disposed over the substrate. The gate strip includes a high-k layer disposed over the substrate, an N-type work function metal layer disposed over the high-k layer, and a barrier layer disposed over the N-type work function metal layer. The barrier layer includes at least one first film containing TiAlN, TaAlN or AlN.
    Type: Application
    Filed: October 11, 2022
    Publication date: February 2, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsin-Yi Lee, Cheng-Lung Hung, Weng Chang, Chi-On Chui
  • Publication number: 20230034854
    Abstract: The present disclosure provides a semiconductor structure and a method for forming the same. The semiconductor structure includes a first nanosheet channel structure and a first high-k dielectric layer surrounding the first nanosheet channel structure. In addition, the semiconductor structure includes a second nanosheet channel structure disposed above and substantially parallel to the first nanosheet channel structure, and a second high-k dielectric layer surrounding the second nanosheet channel structure. The semiconductor structure further includes a work function adjustment layer including silicon and disposed between the first high-k dielectric layer and the second high-k dielectric layer. The first high-k dielectric layer and the second high-k dielectric layer are separated by the work function adjustment layer.
    Type: Application
    Filed: July 29, 2021
    Publication date: February 2, 2023
    Inventors: HSIN-YI LEE, WENG CHANG, CHI ON CHUI
  • Publication number: 20230014471
    Abstract: A method includes forming a dummy gate stack over a semiconductor region, forming epitaxial source/drain regions on opposite sides of the dummy gate stack, removing the dummy gate stack to form a trench, depositing a gate dielectric layer extending into the trench, and depositing a work-function layer over the gate dielectric layer. The work-function layer comprises a seam therein. A silicon-containing layer is deposited to fill the seam. A planarization process is performed to remove excess portions of the silicon-containing layer, the work-function layer, and the gate dielectric layer. Remaining portions of the silicon-containing layer, the work-function layer, and the gate dielectric layer form a gate stack.
    Type: Application
    Filed: August 18, 2021
    Publication date: January 19, 2023
    Inventors: Hsin-Yi Lee, Weng Chang, Chi On Chui
  • Publication number: 20230020099
    Abstract: A method includes forming a dummy gate stack over a semiconductor region, forming a source/drain region on a side of the dummy gate stack, removing the dummy gate stack to form a trench, depositing a gate dielectric layer extending into the trench, depositing a metal-containing layer over the gate dielectric layer, and depositing a silicon-containing layer on the metal-containing layer. The metal-containing layer and the silicon-containing layer in combination act as a work-function layer. A planarization process is performed to remove excess portions of the silicon-containing layer, the metal-containing layer, and the gate dielectric layer, with remaining portions of the silicon-containing layer, the silicon-containing layer, and the gate dielectric layer forming a gate stack.
    Type: Application
    Filed: January 17, 2022
    Publication date: January 19, 2023
    Inventors: Hsin-Yi Lee, Weng Chang, Chi On Chui, Chun-I Wu, Huang-Lin Chao