Patents by Inventor Willem Frederik Adrianus Besling

Willem Frederik Adrianus Besling has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210190615
    Abstract: In an embodiment a sensor arrangement includes a pressure sensor realized as a capacitive pressure sensor, a capacitance-to-digital converter coupled to the pressure sensor and implemented as a delta-sigma analog-to-digital converter and a reference voltage generator having a control input configured to receive a control signal and an output configured to provide a reference voltage, wherein the output of the reference voltage generator is connected to an input of the capacitance-to-digital converter, wherein the reference voltage generator is configured to set a value of the reference voltage as a function of the control signal, and wherein at least two different values of the reference voltage have the same sign and different amounts.
    Type: Application
    Filed: April 10, 2019
    Publication date: June 24, 2021
    Inventors: Alberto Maccioni, Willem Frederik Adrianus Besling
  • Publication number: 20210163282
    Abstract: In an embodiment a system includes a sensor including a base having a base electrode and a first membrane suspended above the base, wherein the first membrane has a first membrane electrode, wherein the first membrane is configured to deflect with respect to the base electrode in response to an environmental condition, and wherein the sensor is configured to measure a capacitance between the base electrode and the first membrane electrode. The system further includes a first device of the system configured to generate electrical interference signals, a first electrically conductive shield layer positioned between the sensor and the first device of the system, wherein the first electrically conductive shield layer defines a plurality of first apertures extending through the first electrically conductive shield layer and a dielectric material disposed in the plurality of first apertures.
    Type: Application
    Filed: April 25, 2019
    Publication date: June 3, 2021
    Inventors: Olaf Wunnicke, Frederik Willem Maurits Vanhelmont, Willem Frederik Adrianus Besling, Remco Henricus Wilhelmus Pijnenburg, Casper Van Der Avoort, Anderson Pires Singulani, Martijn Goossens
  • Patent number: 11001495
    Abstract: The sensor package comprises a carrier (1) including electric conductors (13), an ASIC device (6) and a sensor element (7), which is integrated in the ASIC device (6). A dummy die or interposer (4) is arranged between the carrier (1) and the ASIC device (6). The dummy die or interposer (4) is fastened to the carrier (1), and the ASIC device (6) is fastened to the dummy die or interposer (4).
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: May 11, 2021
    Assignee: Sciosense B.V.
    Inventors: Willem Frederik Adrianus Besling, Casper Van Der Avoort, Coenraad Cornelis Tak, Remco Henricus Wilhelmus Pijnenburg, Olaf Wunnicke, Hendrik Bouman
  • Publication number: 20200361764
    Abstract: A die attachment to a support is disclosed. In an embodiment, a semiconductor package includes a support and a die attached to the support by an adhesive on a backside of the die, wherein the die includes a capacitive pressure sensor integrated on a CMOS read-out circuit, and wherein the adhesive covers only a part of the backside of the die.
    Type: Application
    Filed: November 16, 2018
    Publication date: November 19, 2020
    Inventors: Casper Van Der Avoort, Willem Frederik Adrianus Besling, Remco Henricus Wilhelmus Pijnenburg, Olaf Wunnicke, Coen Tak
  • Publication number: 20200348198
    Abstract: Capacitive pressure sensors and other devices are disclosed. In an embodiment a semiconductor device includes a first electrode, a cavity over the first electrode and a second electrode including a suspended membrane over the cavity and electrically conductive anchor trenches laterally surrounding the cavity, wherein the anchor trenches include an inner anchor trench and an outer anchor trench, the outer anchor trench having rounded corners.
    Type: Application
    Filed: November 16, 2018
    Publication date: November 5, 2020
    Inventors: Willem Frederik Adrianus Besling, Casper Van Der Avoort, Remco Henricus Wilhelmus Pijnenburg, Olaf Wunnicke, Jörg Siegert, Alessandro Faes
  • Publication number: 20200340875
    Abstract: A capacitive sensor is disclosed. In an embodiment a semiconductor device includes a die including a capacitive pressure sensor integrated on a CMOS circuit, wherein the capacitive pressure sensor includes a first electrode and a second electrode separated from one another by a cavity, the second electrode including a suspended tensile membrane, and wherein the first electrode is composed of one or more aluminum-free layers containing Ti.
    Type: Application
    Filed: January 10, 2019
    Publication date: October 29, 2020
    Inventors: Willem Frederik Adrianus Besling, Remco Henricus Wilhelmus Pijnenburg, Kailash Vijayakumar, Jörg Siegert, Alessandro Faes
  • Patent number: 10743112
    Abstract: The microphone and pressure sensor package comprises a carrier (1) with an opening (16), a microphone device (20) including a diaphragm (21) and a perforated back plate (22) arranged above the opening (16), an ASIC device (6), and a cover (9) forming a cavity (17) between the carrier (1) and the cover (9). The ASIC device (6) and the microphone device (20) are arranged in the cavity (17). A sensor element (7) provided for a pressure sensor is integrated in the ASIC device (6). The pressure outside the cavity (17) is transferred to the sensor element (7) through the opening (16), the diaphragm (21), and the back plate (22).
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: August 11, 2020
    Assignee: SCIOSENSE B.V.
    Inventor: Willem Frederik Adrianus Besling
  • Publication number: 20190375628
    Abstract: The sensor package comprises a carrier (1) including electric conductors (13), an ASIC device (6) and a sensor element (7), which is integrated in the ASIC device (6). A dummy die or interposer (4) is arranged between the carrier (1) and the ASIC device (6). The dummy die or interposer (4) is fastened to the carrier (1), and the ASIC device (6) is fastened to the dummy die or interposer (4).
    Type: Application
    Filed: June 14, 2017
    Publication date: December 12, 2019
    Applicant: ams International AG
    Inventors: Willem Frederik Adrianus BESLING, Casper van der AVOORT, Coenraad Cornelis TAK, Remco Henricus Wilhelmus PIJNENBURG, Olaf WUNNICKE, Hendrik BOUMAN
  • Patent number: 10444103
    Abstract: In an embodiment, a method for calibrating a pressure sensor device is disclosed. The method involves determining the resonant frequency of a membrane of the pressure sensor device after the pressure sensor device has been attached to a circuit board, calculating a change in the resonant frequency from a resonant frequency stored in memory, calculating strain of the membrane of the pressure sensor device from the change in resonant frequency, and calibrating the pressure sensor device based on a capacitance-to-pressure curve calculated using the strain of the membrane of the pressure sensor device.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: October 15, 2019
    Assignee: ams International AG
    Inventors: Willem Frederik Adrianus Besling, Casper van der Avoort, Remco Henricus Wilhelmus Pijnenburg, Martijn Goossens
  • Publication number: 20190265119
    Abstract: A pressure sensor device comprises a substrate body, a pressure sensor comprising a membrane, and a cap body comprising at least one opening. The pressure sensor is arranged between the substrate body and the cap body in a vertical direction which is perpendicular to the main plane of extension of the substrate body, and the mass of the substrate body equals approximately the mass of the cap body. Furthermore, a method for forming a pressure sensor device is provided.
    Type: Application
    Filed: October 2, 2017
    Publication date: August 29, 2019
    Inventors: Joerg Siegert, Willem Frederik Adrianus Besling, Coenraad Cornelis Tak, Martin SCHREMS, FRANZ SCHRANK
  • Publication number: 20190234821
    Abstract: A semiconductor device comprises a substrate body, an environmental sensor, a cap body and a volume of gas. The environmental sensor and the volume of gas are arranged between the substrate body and the cap body in a vertical direction which is perpendicular to the main plane of extension of the substrate body, and at least one channel between the substrate body and the cap body connects the volume of gas with the environment of the semiconductor device such that the channel is permeable for gases.
    Type: Application
    Filed: October 2, 2017
    Publication date: August 1, 2019
    Inventors: Willem Frederik Adrianus BESLING, Casper VAN DER AVOORT, Coenraad Cornelis TAK, Remco Henricus Wilhelmus PIJNENBURG, Olaf WUNNICKE, Martijn GOOSSENS
  • Publication number: 20190226921
    Abstract: An integrated temperature sensor comprises a chip package enclosing an integrated circuit and an ultrasonic transceiver which is integrated on top of the integrated circuit. The ultrasonic transceiver comprises a transmitting element which is arranged for emitting ultrasound waves, and a receiving element which is arranged for receiving ultrasound waves. The chip package comprises at least one barrier arranged at a defined position in the chip package. The barrier is designed to at least partly reflect ultrasound waves emitted by the transmitting element towards the receiving element. The integrated circuit comprises an actuator element to actuate the transmitting element to emit ultrasound waves according to a first signal s(t), and a converter element to convert an ultrasound wave, received by the receiving element, into a second signal y(t).
    Type: Application
    Filed: August 7, 2017
    Publication date: July 25, 2019
    Inventors: Zoran ZIVKOVIC, Casper VAN DER Avoort, Willem Frederik Adrianus BESLING
  • Publication number: 20190208331
    Abstract: The microphone and pressure sensor package comprises a carrier (1) with an opening (16), a microphone device (20) including a diaphragm (21) and a perforated back plate (22) arranged above the opening (16), an ASIC device (6), and a cover (9) forming a cavity (17) between the carrier (1) and the cover (9). The ASIC device (6) and the microphone device (20) are arranged in the cavity (17). A sensor element (7) provided for a pressure sensor is integrated in the ASIC device (6). The pressure outside the cavity (17) is transferred to the sensor element (7) through the opening (16), the diaphragm (21), and the back plate (22).
    Type: Application
    Filed: June 14, 2017
    Publication date: July 4, 2019
    Inventor: Willem Frederik Adrianus Besling
  • Patent number: 10060817
    Abstract: Disclosed is an integrated circuit, comprising a semiconductor substrate carrying a plurality of circuit elements; and a pressure sensor including a cavity on said semiconductor substrate, said cavity comprising a pair of electrodes laterally separated from each other; and a flexible membrane over and spatially separated from said electrodes such that said membrane interferes with a fringe field between said electrodes, said membrane comprising at least one aperture. A method of manufacturing such an IC is also disclosed.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: August 28, 2018
    Assignee: ams International AG
    Inventors: Axel Nackaerts, Willem Frederik Adrianus Besling, Klaus Reimann
  • Patent number: 9772245
    Abstract: A pressure sensor measures pressure by measuring the deflection of a MEMS membrane using a capacitive read-out method. There are two ways to implement the invention. One involves the use of an integrated Pirani sensor and the other involves the use of an integrated resonator, to function as a reference pressure sensor, for measuring an internal cavity pressure.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: September 26, 2017
    Assignee: ams International AG
    Inventors: Willem Frederik Adrianus Besling, Martijn Goossens, Jozef Thomas Martinus van Beek, Peter Gerard Steeneken, Olaf Wunnicke
  • Patent number: 9737245
    Abstract: Disclosed is a flexible insert (100) for placement on the human eye, comprising a light source (110) in said insert such that light emitted from the light source is shielded from the human eye upon correct placement of the insert on the human eye, a light-responsive material (120) placed in the light path of the light source, said light-responsive material emitting light upon stimulation by the light from said light source, the intensity of said stimulated emission being sensitive to a chemical interaction of the light-sensitive material with an analyte of interest, a photodetector (130) for detecting the light emitted by the light-responsive material; and a transmitter (140) coupled to the photodetector for transmitting a photodetector reading. The insert may be used in conjunction with a reader for automated monitoring of an analyte of interest such as glucose in the tear fluid of its wearer.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: August 22, 2017
    Assignee: NXP B.V.
    Inventor: Willem Frederik Adrianus Besling
  • Patent number: 9726561
    Abstract: A differential pressure sensor comprises a cavity having a base including a base electrode and a membrane suspended above the base which includes a membrane electrode, wherein the first membrane is sealed with the cavity defined beneath the first membrane. A first pressure input port is coupled to the space above the sealed first membrane. A capacitive read out system is used to measure the capacitance between the base electrode and membrane electrode. An interconnecting channel is between the cavity and a second pressure input port, so that the sensor is responsive to the differential pressure applied to opposite sides of the membrane by the two input ports.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: August 8, 2017
    Assignee: ams International AG
    Inventors: Willem Frederik Adrianus Besling, Iris Bominaar-Silkens, Remco Henricus Wilhelmus Pijnenburg, Marten Oldsen
  • Patent number: 9608297
    Abstract: Various embodiments relate to an in-cell battery management device including: an integrated circuit (IC) including a controller, a resistive balancer, a voltage sensor, and a pressure sensor; and an IC package that encloses the IC having a hole over the pressure sensor wherein the hole allows the pressure sensor to measure pressure in a battery cell; wherein the IC package is contact with the battery cell.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: March 28, 2017
    Assignee: DATANG NXP SEMICONDUCTORS CO., LTD.
    Inventors: Johannes Petrus Maria van Lammeren, Willem Frederik Adrianus Besling
  • Patent number: 9604134
    Abstract: A gaming system has a pressure measurement in the remote control (which may be the complete gaming apparatus) and this is used to derive a height of the remote control. In this way, barometric pressure measurement allows precise determination of the altitude of the game controller. The altitude information is then used to control the game.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: March 28, 2017
    Assignee: AMS INTERNATIONAL AG
    Inventors: Aliaksei Vladimirovich Sedzin, Willem Frederik Adrianus Besling
  • Publication number: 20170016787
    Abstract: A pressure sensor measures pressure by measuring the deflection of a MEMS membrane using a capacitive read-out method. There are two ways to implement the invention. One involves the use of an integrated Pirani sensor and the other involves the use of an integrated resonator, to function as a reference pressure sensor, for measuring an internal cavity pressure.
    Type: Application
    Filed: March 6, 2013
    Publication date: January 19, 2017
    Inventors: Willem Frederik Adrianus Besling, Martijn Goossens, Jozef Thomas Martinus van Beek, Peter Gerard Steeneken, Olaf Wunnicke