Patents by Inventor Willi Volksen

Willi Volksen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7931829
    Abstract: A composition of matter and a structure fabricated using the composition. The composition comprising: a resin; polymeric nano-particles dispersed in the resin, each of the polymeric nano-particle comprising a multi-arm core polymer and pendent polymers attached to the multi-arm core polymer, the multi-arm core polymer immiscible with the resin and the pendent polymers miscible with the resin; and a solvent, the solvent volatile at a first temperature, the resin cross-linkable at a second temperature, the polymeric nano-particle decomposable at a third temperature, the third temperature higher than the second temperature, the second temperature higher than the first temperature, wherein a thickness of a layer of the composition shrinks by less than about 3.5% between heating the layer from the second temperature to the third temperature.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: April 26, 2011
    Assignee: International Business Machines Corporation
    Inventors: Geraud Jean-Michel Dubois, James Lupton Hedrick, Ho-Cheol Kim, Victor Yee-Way Lee, Teddie Peregrino Magbitang, Robert Dennis Miller, Muthumanickam Sankarapandian, Linda Karin Sundberg, Willi Volksen
  • Patent number: 7892635
    Abstract: Precursors are provided for dielectric compositions that are useful in the manufacture of electronic devices such as integrated circuit devices and integrated circuit packaging devices. The dielectric compositions are prepared by crosslinking a thermally decomposable porogen to a host polymer via a coupling agent, followed by heating to a temperature suitable to decompose the porogen. The porous materials that result have dielectric constants of less than 2.4.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: February 22, 2011
    Assignee: International Business Machines Corporation
    Inventors: Craig Jon Hawker, James L. Hedrick, Robert D. Miller, Willi Volksen
  • Publication number: 20100311895
    Abstract: A composition of matter and a structure fabricated using the composition. The composition comprising: a resin; polymeric nano-particles dispersed in the resin, each of the polymeric nano-particle comprising a multi-arm core polymer and pendent polymers attached to the multi-arm core polymer, the multi-arm core polymer immiscible with the resin and the pendent polymers miscible with the resin; and a solvent, the solvent volatile at a first temperature, the resin cross-linkable at a second temperature, the polymeric nano-particle decomposable at a third temperature, the third temperature higher than the second temperature, the second temperature higher than the first temperature, wherein a thickness of a layer of the composition shrinks by less than about 3.5% between heating the layer from the second temperature to the third temperature.
    Type: Application
    Filed: August 17, 2010
    Publication date: December 9, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Geraud Jean-Michel Dubois, James Lupton Hedrick, Ho-Cheol Kim, Victor Yee-Way Lee, Teddie Peregrino Magbitang, Robert Dennis Miller, Muthumanickam Sankarapandian, Linda Karin Sundberg, Willi Volksen
  • Patent number: 7820242
    Abstract: A composition of matter and a structure fabricated using the composition. The composition comprising: a resin; polymeric nano-particles dispersed in the resin, each of the polymeric nano-particle comprising a multi-arm core polymer and pendent polymers attached to the multi-arm core polymer, the multi-arm core polymer immiscible with the resin and the pendent polymers miscible with the resin; and a solvent, the solvent volatile at a first temperature, the resin cross-linkable at a second temperature, the polymeric nano-particle decomposable at a third temperature, the third temperature higher than the second temperature, the second temperature higher than the first temperature, wherein a thickness of a layer of the composition shrinks by less than about 3.5% between heating the layer from the second temperature to the third temperature.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: October 26, 2010
    Assignee: International Business Machines Corporation
    Inventors: Geraud Jean-Michel Dubois, James Lupton Hedrick, Ho-Cheol Kim, Victor Yee-Way Lee, Teddie Peregrino Magbitang, Robert Dennis Miller, Muthumanickam Sankarapandian, Linda Karin Sundberg, Willi Volksen
  • Publication number: 20100055307
    Abstract: A nanoporous material exhibiting a lamellar structure is disclosed. The material comprises three or more substantially parallel sheets of an organosilicate material, separated by highly porous spacer regions. The distance between the centers of the sheets lies between 1 nm and 50 nm. The highly porous spacer regions may be substantially free of condensed material. For the manufacture of such materials, a process is disclosed in which matrix non-amphiphilic polymeric material and templating polymeric material are dispersed in a solvent, where the templating polymeric material includes a polymeric amphiphilic material. The solvent with the polymeric materials is distributed onto a substrate. Organization is induced in the templating polymeric material. The solvent is removed, leaving the polymeric materials in place. The matrix polymeric material is cured, forming a lamellar structure.
    Type: Application
    Filed: December 18, 2008
    Publication date: March 4, 2010
    Applicant: International Business Machines Corporation
    Inventors: Jennifer Nam Cha, Geraud Jean-Michel Dubois, James Lupton Hedrick, Ho-Cheol Kim, Victor Yee-Way Lee, Teddie Peregrino Magbitang, Robert Dennis Miller, Willi Volksen
  • Publication number: 20090075472
    Abstract: Methods of minimizing or eliminating plasma damage to low k and ultra low k organosilicate intermetal dielectric layers are provided. The reduction of the plasma damage is effected by interrupting the etch and strip process flow at a suitable point to add an inventive treatment which protects the intermetal dielectric layer from plasma damage during the plasma strip process. Reduction or elimination of a plasma damaged region in this manner also enables reduction of the line bias between a line pattern in a photoresist and a metal line formed therefrom, and changes in the line width of the line trench due to a wet clean after the reactive ion etch employed for formation of the line trench and a via cavity. The reduced line bias has a beneficial effect on electrical yields of a metal interconnect structure.
    Type: Application
    Filed: September 19, 2007
    Publication date: March 19, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John C. Arnold, Griselda Bonilla, William J. Cote, Geraud Dubois, Daniel C. Edelstein, Alfred Grill, Elbert Huang, Robert D. Miller, Satya V. Nitta, Sampath Purushothaman, E. Todd Ryan, Muthumanickam Sankarapandian, Terry A. Spooner, Willi Volksen
  • Patent number: 7482389
    Abstract: A nanoporous material exhibiting a lamellar structure is disclosed. The material comprises three or more substantially parallel sheets of an organosilicate material, separated by highly porous spacer regions. The distance between the centers of the sheets lies between 1 nm and 50 nm. The highly porous spacer regions may be substantially free of condensed material. For the manufacture of such materials, a process is disclosed in which matrix non-amphiphilic polymeric material and templating polymeric material are dispersed in a solvent, where the templating polymeric material includes a polymeric amphiphilic material. The solvent with the polymeric materials is distributed onto a substrate. Organization is induced in the templating polymeric material. The solvent is removed, leaving the polymeric materials in place. The matrix polymeric material is cured, forming a lamellar structure.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: January 27, 2009
    Assignee: International Business Machines Corporation
    Inventors: Jennifer Nam Cha, Geraud Jean-Michel Dubois, James Lupton Hedrick, Ho-Cheol Kim, Victor Yee-Way Lee, Teddie Peregrino Magbitang, Robert Dennis Miller, Willi Volksen
  • Patent number: 7459183
    Abstract: A method of forming a structure. The method including: forming a precursor layer on a substarte, the precursor layer including a resin and, polymeric nano-particles dispersed in the resin, and a solvent, each the polymeric nano-particle comprising a multi-arm core polymer and pendent polymers attached to the milti-arm core polymer and pendent polymers attached to the multi-arm core polymer, the multi-arm core polymer immiscible with the resin and the pendent polymers miscuble with the resin; heating the precursor layer to cross-link at least about 90% of the resin thereby converting the pre-baked precursor layer to a dielectric layer; forming trenches in the dielectric layer and filling the trenches with an electrical conductor; heating the dielectric layer to thermally decompose at least acout 99.5% of the polymeric nano-particles into decomposition products and to drive the decomposition products out of the dielectric layer.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: December 2, 2008
    Assignee: International Business Machines Corporation
    Inventors: Geraud Jean-Michel Dubois, James Lupton Hedrick, Ho-Cheol Kim, Victor Yee-Way Lee, Teddie Peregrino Magbitang, Robert Dennis Miller, Muthumanickam Sankarapandian, Linda Karin Sundberg, Willi Volksen
  • Publication number: 20080213556
    Abstract: A material and an associated method of formation. A self-assembling block copolymer that includes a first block species and a second block species respectively characterized by a volume fraction of F1 and F2 with respect to the self-assembling block copolymer is provided. At least one crosslinkable polymer that is miscible with the second block species is provided. The self-assembling block copolymer and the at least one crosslinkable polymer are combined to form a mixture. The mixture having a volume fraction, F3, of the crosslinkable polymer, a volume fraction, F1A, of the first block species, and a volume fraction, F2A, of the second block species is formed. A material having a predefined morphology where the sum of F2A and F3 were preselected is formed.
    Type: Application
    Filed: April 2, 2008
    Publication date: September 4, 2008
    Inventors: Jennifer Nam Cha, James Lupton Hedrick, Ho-Cheol Kim, Robert Dennis Miller, Willi Volksen
  • Publication number: 20080188578
    Abstract: Precursors are provided for dielectric compositions that are useful in the manufacture of electronic devices such as integrated circuit devices and integrated circuit packaging devices. The dielectric compositions are prepared by crosslinking a thermally decomposable porogen to a host polymer via a coupling agent, followed by heating to a temperature suitable to decompose the porogen. The porous materials that result have dielectric constants of less than 2.4.
    Type: Application
    Filed: February 26, 2008
    Publication date: August 7, 2008
    Applicant: International Business Machines
    Inventors: Craig Jon Hawker, James L. Hedrick, Robert D. Miller, Willi Volksen
  • Publication number: 20080171136
    Abstract: A composition of matter and a structure fabricated using the composition. The composition comprising: a resin; polymeric nano-particles dispersed in the resin, each of the polymeric nano-particle comprising a multi-arm core polymer and pendent polymers attached to the multi-arm core polymer, the multi-arm core polymer immiscible with the resin and the pendent polymers miscible with the resin; and a solvent, the solvent volatile at a first temperature, the resin cross-linkable at a second temperature, the polymeric nano-particle decomposable at a third temperature, the third temperature higher than the second temperature, the second temperature higher than the first temperature, wherein a thickness of a layer of the composition shrinks by less than about 3.5% between heating the layer from the second temperature to the third temperature.
    Type: Application
    Filed: March 24, 2008
    Publication date: July 17, 2008
    Inventors: Geraud Jean-Michel Dubois, James Lupton Hedrick, Ho-Cheol Kim, Victor Yee-Way Lee, Teddie Peregrino Magbitang, Robert Dennis Miller, Muthumanickam Sankarapandian, Linda Karin Sundberg, Willi Volksen
  • Publication number: 20080142930
    Abstract: A low-k organic dielectric material having stable nano-sized porous is provided as well as a method of fabricating the same. The porous low-k organic dielectric material is made from a composition of matter having a vitrification temperature (Tv-comp) which includes a b-staged thermosetting resin having a vitrification temperate (Tv-resin), a pore generating material, and a reactive additive. The reactive additive lowers Tv-comp below Tv-resin.
    Type: Application
    Filed: February 21, 2008
    Publication date: June 19, 2008
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, DOW GLOBAL TECHNOLOGIES, INC.
    Inventors: Eric Connor, James P. Godschalx, Craig J. Hawker, James L. Hedrick, Victor Yee-Way Lee, Teddie P. Magbitang, Robert D. Miller, Q. Jason Niu, Willi Volksen
  • Publication number: 20080113169
    Abstract: A material and an associated method of formation. A self-assembling block copolymer that includes a first block species and a second block species respectively characterized by a volume fraction of F1 and F2 with respect to the self-assembling block copolymer is provided. At least one crosslinkable polymer that is miscible with the second block species is provided. The self-assembling block copolymer and the at least one crosslinkable polymer are combined to form a mixture. The mixture having a volume fraction, F3, of the crosslinkable polymer, a volume fraction, F1A, of the first block species, and a volume fraction, F2A, of the second block species is formed. A material having a predefined morphology where the sum of F2A and F3 were preselected is formed.
    Type: Application
    Filed: December 5, 2007
    Publication date: May 15, 2008
    Inventors: Jennifer Cha, James Hedrick, Ho-Cheol Kim, Robert Miller, Willi Volksen
  • Patent number: 7368483
    Abstract: A low-k organic dielectric material having stable nano-sized porous is provided as well as a method of fabricating the same. The porous low-k organic dielectric material is made from a composition of matter having a vitrification temperature (Tv-comp) which includes a b-staged thermosetting resin having a vitrification temperate (Tv-resin), a pore generating material, and a reactive additive. The reactive additive lowers Tv-comp below Tv-resin.
    Type: Grant
    Filed: April 19, 2004
    Date of Patent: May 6, 2008
    Assignees: International Business Machines Corporation, Dow Global Technologies, Inc.
    Inventors: Eric Connor, James P. Godschalx, Craig J. Hawker, James L. Hedrick, Victor Yee-Way Lee, Teddie P. Magbitang, Robert D. Miller, Q. Jason Niu, Willi Volksen
  • Patent number: 7341788
    Abstract: A material and an associated method of formation. A self-assembling block copolymer that includes a first block species and a second block species respectively characterized by a volume fraction of F1 and F2 with respect to the self-assembling block copolymer is provided. At least one crosslinkable polymer that is miscible with the second block species is provided. The self-assembling block copolymer and the at least one crosslinkable polymer are combined to form a mixture. The mixture having a volume fraction, F3, of the crosslinkable polymer, a volume fraction, F1A, of the first block species, and a volume fraction, F2A, of the second block species is formed. A material having a predefined morphology where the sum of F2A and F3 were preselected is formed.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: March 11, 2008
    Assignee: International Business Machines Corporation
    Inventors: Jennifer Nam Cha, James Lupton Hedrick, Ho-Cheol Kim, Robert Dennis Miller, Willi Volksen
  • Patent number: 7309754
    Abstract: An encapsulant fluid is provided comprising a mixture of a diene-containing compound and a dienophilic compound. At least one of the diene-containing and the dienophilic compounds is protected so that the compounds do not substantially react with each other at room temperature. The diene-containing and the dienophilic compounds undergo a reversible Diels-Alder polymerization reaction at a polymerization temperature above room temperature to form a solid debondable polymeric encapsulant. Also provided are methods for forming slider assemblies and methods for patterning a slider surface using the encapsulant.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: December 18, 2007
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Phillip Joe Brock, Michael W. Chaw, Dan Dawson, Craig Hawker, James L. Hedrick, Teddie P. Magbitang, Dennis McKean, Robert D. Miller, Richard I. Palmisano, Willi Volksen
  • Patent number: 7229934
    Abstract: Oxycarbosilane materials make excellent matrix materials for the formation of porous low-k materials using incorporated pore generators(porogens). The elastic modulus numbers measured for porous samples prepared in this fashion are 3–6 times higher than porous organosilicates prepared using the sacrificial porogen route. The oxycarbosilane materials are used to produce integrated circuits for use in electronics devices.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: June 12, 2007
    Assignee: International Business Machines Corporation
    Inventors: Geraud Dubois, James Hedrick, Ho-Cheol Kim, Victor Lee, Teddie Magbitang, Robert Miller, Eva Simonyi, Willi Volksen
  • Patent number: 7209324
    Abstract: The invention relates generally to the bonding of one or more sliders in styrene and butadiene polymers. More particularly, the invention relates to planarized slider assemblies formed by using debondable solid encapsulants comprised of styrene and butadiene polymers. The invention also relates to methods that use such encapsulants in conjunction with resists to produce magnetic head sliders having patterned air-bearing surfaces.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: April 24, 2007
    Assignee: Hitachi Global Storage Netherlands, B.V.
    Inventors: Phillip J. Brock, Michael W. Chaw, Dan J. Dawson, Craig J. Hawker, James L. Hedrick, Teddie P. Magbitang, Dennis R. McKean, Robert D. Miller, Richard I. Palmisano, Willi Volksen
  • Patent number: 7196872
    Abstract: A slider assembly is provided comprising a plurality of sliders bonded by a debondable solid encapsulant comprised of different first and second polymers The solid encapsulant is comprised of a polymer prepared by polymerizing an encapsulant fluid comprising a homogeneous mixture of first and second constituents. The first constituent is comprised of a first monomer suitable for in situ polymerization to form the first polymer. The second constituent is comprised of the second polymer or a second monomer suitable for in situ polymerization to form the second polymer. The first constituent does not substantially react with the second constituent. Each slider has a surface that is free from the encapsulant. The encapsulant-free surfaces are coplanar to each other. Also provided are methods for forming the assembly and methods for patterning a slider surface using the encapsulant.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: March 27, 2007
    Assignee: Hitachi Global Storage Netherlands, B.V.
    Inventors: Michael W. Chaw, Dan J. Dawson, Craig J. Hawker, James L. Hedrick, Wesley L. Hillman, Teddie P. Magbitang, Dennis R. McKean, Robert D. Miller, Willi Volksen
  • Publication number: 20070023870
    Abstract: A composition of matter and a structure fabricated using the composition. The composition comprising: a resin; polymeric nano-particles dispersed in the resin, each of the polymeric nano-particle comprising a multi-arm core polymer and pendent polymers attached to the multi-arm core polymer, the multi-arm core polymer immiscible with the resin and the pendent polymers miscible with the resin; and a solvent, the solvent volatile at a first temperature, the resin cross-linkable at a second temperature, the polymeric nano-particle decomposable at a third temperature, the third temperature higher than the second temperature, the second temperature higher than the first temperature, wherein a thickness of a layer of the composition shrinks by less than about 3.5% between heating the layer from the second temperature to the third temperature.
    Type: Application
    Filed: July 27, 2005
    Publication date: February 1, 2007
    Inventors: Geraud Dubois, James Hedrick, Ho-Cheol Kim, Victor Lee, Teddie Magbitang, Robert Miller, Muthumanickam Sankarapandian, Linda Sundberg, Willi Volksen