Patents by Inventor William J. Gallagher

William J. Gallagher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180076275
    Abstract: An on-chip magnetic structure structure includes a magnetic material comprising cobalt in a range from about 80 to about 90 atomic % (at. %) based on the total number of atoms of the magnetic material, tungsten in a range from about 4 to about 9 at. % based on the total number of atoms of the magnetic material, phosphorous in a range from about 7 to about 15 at. % based on the total number of atoms of the magnetic material, and palladium substantially dispersed throughout the magnetic material.
    Type: Application
    Filed: November 20, 2017
    Publication date: March 15, 2018
    Inventors: Hariklia Deligianni, William J. Gallagher, Andrew J. Kellock, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Patent number: 9911602
    Abstract: A method and structure for integrating gallium nitride into a semiconductor substrate. The method may also include means for isolating the gallium nitride from the semiconductor substrate.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: March 6, 2018
    Assignee: International Business Machines Corporation
    Inventors: William J. Gallagher, Effendi Leobandung, Devendra K. Sadana, Ghavam G. Shahidi
  • Publication number: 20180012953
    Abstract: An on-chip magnetic structure includes a palladium activated seed layer and a substantially amorphous magnetic material disposed onto the palladium activated seed layer. The substantially amorphous magnetic material includes nickel in a range from about 50 to about 80 atomic % (at. %) based on the total number of atoms of the magnetic material, iron in a range from about 10 to about 50 at. % based on the total number of atoms of the magnetic material, and phosphorous in a range from about 0.1 to about 30 at. % based on the total number of atoms of the magnetic material. The magnetic material can include boron in a range from about 0.1 to about 5 at. % based on the total number of atoms of the magnetic material.
    Type: Application
    Filed: September 7, 2017
    Publication date: January 11, 2018
    Inventors: Hariklia Deligianni, William J. Gallagher, Maurice Mason, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Patent number: 9865673
    Abstract: An on-chip magnetic structure includes a magnetic material comprising cobalt in a range from about 80 to about 90 atomic % (at. %) based on the total number of atoms of the magnetic material, tungsten in a range from about 4 to about 9 at. % based on the total number of atoms of the magnetic material, phosphorous in a range from about 7 to about 15 at. % based on the total number of atoms of the magnetic material, and palladium substantially dispersed throughout the magnetic material.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: January 9, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, William J. Gallagher, Andrew J. Kellock, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Publication number: 20170316855
    Abstract: Present disclosure relates to magnetic materials, chips having magnetic materials, and methods of forming magnetic materials. In certain embodiments, magnetic materials may include a seed layer, and a cobalt-based alloy formed on seed layer. The seed layer may include copper, cobalt, nickel, platinum, palladium, ruthenium, iron, nickel alloy, cobalt-iron-boron alloy, nickel-iron alloy, and any combination of these materials. In certain embodiments, the chip may include one or more on-chip magnetic structures. Each on-chip magnetic structure may include a seed layer, and a cobalt-based alloy formed on seed layer. In certain embodiments, method may include: placing a seed layer in an aqueous electroless plating bath to form a cobalt-based alloy on seed layer. In certain embodiments, the aqueous electroless plating bath may include sodium tetraborate, an alkali metal tartrate, ammonium sulfate, cobalt sulfate, ferric ammonium sulfate and sodium borohydride and has a pH between about 9 to about 13.
    Type: Application
    Filed: May 2, 2016
    Publication date: November 2, 2017
    Inventors: HARIKLIA DELIGIANNI, WILLIAM J. GALLAGHER, YU LUO, LUBOMYR T. ROMANKIW, JOONAH YOON
  • Publication number: 20170314136
    Abstract: Present disclosure relates to magnetic materials, chips having magnetic materials, and methods of forming magnetic materials. In certain embodiments, magnetic materials may include a seed layer, and a cobalt-based alloy formed on seed layer. The seed layer may include copper, cobalt, nickel, platinum, palladium, ruthenium, iron, nickel alloy, cobalt-iron-boron alloy, nickel-iron alloy, and any combination of these materials. In certain embodiments, the chip may include one or more on-chip magnetic structures. Each on-chip magnetic structure may include a seed layer, and a cobalt-based alloy formed on seed layer. In certain embodiments, method may include: placing a seed layer in an aqueous electroless plating bath to form a cobalt-based alloy on seed layer. In certain embodiments, the aqueous electroless plating bath may include sodium tetraborate, an alkali metal tartrate, ammonium sulfate, cobalt sulfate, ferric ammonium sulfate and sodium borohydride and has a pH between about 9 to about 13.
    Type: Application
    Filed: April 13, 2017
    Publication date: November 2, 2017
    Inventors: HARIKLIA DELIGIANNI, WILLIAM J. GALLAGHER, YU LUO, LUBOMYR T. ROMANKIW, JOONAH YOON
  • Patent number: 9793336
    Abstract: An on-chip magnetic structure includes a palladium activated seed layer and a substantially amorphous magnetic material disposed onto the palladium activated seed layer. The substantially amorphous magnetic material includes nickel in a range from about 50 to about 80 atomic % (at. %) based on the total number of atoms of the magnetic material, iron in a range from about 10 to about 50 at. % based on the total number of atoms of the magnetic material, and phosphorous in a range from about 0.1 to about 30 at. % based on the total number of atoms of the magnetic material. The magnetic material can include boron in a range from about 0.1 to about 5 at. % based on the total number of atoms of the magnetic material.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: October 17, 2017
    Assignee: INTERNATIONAL BUSIENSS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, William J. Gallagher, Maurice Mason, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Publication number: 20170294504
    Abstract: Disclosed are magnetic structures, including on-chip inductors comprising laminated layers comprising, in order, a barrier and/or adhesion layer, a antiferromagnetic layer, a magnetic growth layer, a soft magnetic layer, an insulating non-magnetic spacer, a soft magnetic layer, a magnetic growth later, an antiferromagnetic layer. Also disclosed are methods of making such structures.
    Type: Application
    Filed: June 21, 2017
    Publication date: October 12, 2017
    Inventors: Hariklia Deligianni, William J. Gallagher, Eugene J, O'Sullivan, Naigang Wang
  • Publication number: 20170278557
    Abstract: A method for controlling a magnetic memory device is provided. The method includes: applying a first control signal and a second control signal to a ferromagnetic fixed layer and a ferromagnetic free layer of the magnetic memory device respectively, wherein a first voltage level of the first control signal is lower than a second voltage level of the second control signal; sensing a first current signal flowing through the magnetic memory device; and determining a logical state of a first data bit according to the first current signal.
    Type: Application
    Filed: June 6, 2016
    Publication date: September 28, 2017
    Inventors: Yu-Der CHIH, Tien-Wei CHIANG, Chun-Jung LIN, Harry-Hak-Lay CHUANG, William J. GALLAGHER
  • Patent number: 9767878
    Abstract: A method for controlling a magnetic memory device is provided. The method includes: applying a first control signal and a second control signal to a ferromagnetic fixed layer and a ferromagnetic free layer of the magnetic memory device respectively, wherein a first voltage level of the first control signal is lower than a second voltage level of the second control signal; sensing a first current signal flowing through the magnetic memory device; and determining a logical state of a first data bit according to the first current signal.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: September 19, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANT LTD.
    Inventors: Yu-Der Chih, Tien-Wei Chiang, Chun-Jung Lin, Harry-Hak-Lay Chuang, William J. Gallagher
  • Patent number: 9761368
    Abstract: Disclosed are magnetic structures, including on-chip inductors comprising laminated layers comprising, in order, a barrier and/or adhesion layer, a antiferromagnetic layer, a magnetic growth layer, a soft magnetic layer, an insulating non-magnetic spacer, a soft magnetic layer, a magnetic growth later, an antiferromagnetic layer. Also disclosed are methods of making such structures.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: September 12, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, William J. Gallagher, Eugene J. O'Sullivan, Naigang Wang
  • Patent number: 9734883
    Abstract: A reference circuit for a magnetic random access memory (MRAM) is provided. The reference circuit includes a plurality of device strings coupled in parallel. Each of the device strings includes a plurality of magnetic tunnel junction (MTJ) devices coupled in serial. A quantity of MTJ devices of each of the device strings is equal to a quantity of device strings. An equivalent resistance of the MTJ devices is equal to the resistance of one of the MTJ devices.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: August 15, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chwen Yu, Shy-Jay Lin, William J. Gallagher
  • Publication number: 20170229533
    Abstract: An on-chip magnetic structure includes a palladium activated seed layer and a substantially amorphous magnetic material disposed onto the palladium activated seed layer. The substantially amorphous magnetic material includes nickel in a range from about 50 to about 80 atomic % (at. %) based on the total number of atoms of the magnetic material, iron in a range from about 10 to about 50 at. % based on the total number of atoms of the magnetic material, and phosphorous in a range from about 0.1 to about 30 at. % based on the total number of atoms of the magnetic material. The magnetic material can include boron in a range from about 0.1 to about 5 at. % based on the total number of atoms of the magnetic material.
    Type: Application
    Filed: January 20, 2017
    Publication date: August 10, 2017
    Inventors: Hariklia Deligianni, William J. Gallagher, Maurice Mason, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Patent number: 9697943
    Abstract: A laminating structure includes a first magnetic layer, a second magnetic layer, a first spacer disposed between the first and second magnetic layers and a second spacer disposed on the second magnetic layer.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: July 4, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert E. Fontana, Jr., William J. Gallagher, Philipp Herget, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang, Bucknell C. Webb
  • Patent number: 9691425
    Abstract: A laminating structure includes a first magnetic layer, a second magnetic layer, a first spacer disposed between the first and second magnetic layers and a second spacer disposed on the second magnetic layer.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: June 27, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert E. Fontana, Jr., William J. Gallagher, Philipp Herget, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang, Bucknell C. Webb
  • Publication number: 20170178788
    Abstract: Disclosed are magnetic structures, including on-chip inductors comprising laminated layers comprising, in order, a barrier and/or adhesion layer, a antiferromagnetic layer, a magnetic growth layer, a soft magnetic layer, an insulating non-magnetic spacer, a soft magnetic layer, a magnetic growth later, an antiferromagnetic layer. Also disclosed are methods of making such structures.
    Type: Application
    Filed: December 22, 2015
    Publication date: June 22, 2017
    Inventors: Hariklia Deligianni, William J. Gallagher, Eugene J. O'Sullivan, Naigang Wang
  • Patent number: 9685329
    Abstract: A method and structure for integrating gallium nitride into a semiconductor substrate. The method may also include means for isolating the gallium nitride from the semiconductor substrate.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: June 20, 2017
    Assignee: International Business Machines Corporation
    Inventors: William J. Gallagher, Effendi Leobandung, Devendra K. Sadana, Ghavam G. Shahidi
  • Patent number: 9660069
    Abstract: A method of forming a structure that can be used to integrate Si-based devices, i.e., nFETs and pFETs, with Group III nitride-based devices is provided. The method includes providing a substrate containing an nFET device region, a pFET device region and a Group III nitride device region, wherein the substrate includes a topmost silicon layer and a <111> silicon layer located beneath the topmost silicon layer. Next, a trench is formed within the Group III nitride device region to expose a sub-surface of the <111> silicon layer. The trench is then partially filled with a Group III nitride base material, wherein the Group III nitride material base material has a topmost surface that is coplanar with, or below, a topmost surface of the topmost silicon layer.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: May 23, 2017
    Assignee: International Business Machines Corporation
    Inventors: Can Bayram, Christopher Peter D'Emic, William J. Gallagher, Effendi Leobandung, Devendra K. Sadana
  • Patent number: 9653532
    Abstract: An on-chip magnetic structure structure includes a magnetic material comprising cobalt in a range from about 80 to about 90 atomic % (at. %) based on the total number of atoms of the magnetic material, tungsten in a range from about 4 to about 9 at. % based on the total number of atoms of the magnetic material, phosphorous in a range from about 7 to about 15 at. % based on the total number of atoms of the magnetic material, and palladium substantially dispersed throughout the magnetic material.
    Type: Grant
    Filed: July 30, 2016
    Date of Patent: May 16, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, William J. Gallagher, Andrew J. Kellock, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Publication number: 20170076852
    Abstract: A technique relates to a method of forming a laminated multilayer magnetic structure. An adhesion layer is deposited on a substrate. A magnetic seed layer is deposited on top of the adhesion layer. Magnetic layers and non-magnetic spacer layers are alternatingly deposited such that an even number of the magnetic layers is deposited while an odd number of the non-magnetic spacer layers is deposited. The odd number is one less than the even number. Every two of the magnetic layers is separated by one of the non-magnetic spacer layers. The first of the magnetic layers is deposited on the magnetic seed layer, and the magnetic layers each have a thickness less than 500 nanometers.
    Type: Application
    Filed: September 15, 2015
    Publication date: March 16, 2017
    Inventors: Hariklia Deligianni, William J. Gallagher, Sathana Kitayaporn, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang, Joonah Yoon