Patents by Inventor William Thie

William Thie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7709400
    Abstract: Methods for cleaning semiconductor wafers following chemical mechanical polishing are provided. An exemplary method exposes a wafer to a thermal treatment in an oxidizing environment followed by a thermal treatment in a reducing environment. The thermal treatment in the oxidizing environment both removes residues and oxidizes exposed copper surfaces to form a cupric oxide layer. The thermal treatment in the reducing environment then reduces the cupric oxide to elemental copper. This leaves the exposed copper clean and in condition for further processing, such as electroless plating.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: May 4, 2010
    Assignee: Lam Research Corporation
    Inventors: Zhonghui Alex Wang, Tiruchirapalli Arunagirí, Fritz C. Redeker, Yezdi Dordi, John Boyd, Mikhail Korolik, Arthur M. Howald, William Thie, Praveen Nalla
  • Patent number: 7662253
    Abstract: An apparatus generating a plasma for removing metal oxide from a substrate is disclosed. The embodiment includes a powered electrode assembly, including a powered electrode, a first dielectric layer, and a first wire mesh disposed between the powered electrode and the first dielectric layer. The embodiment also includes a grounded electrode assembly disposed opposite the powered electrode assembly so as to form a cavity wherein the plasma is generated, the first wire mesh being shielded from the plasma by the first dielectric layer when the plasma is present in the cavity, the cavity having an outlet at one end for providing the plasma to remove the metal oxide.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: February 16, 2010
    Assignee: Lam Research Corporation
    Inventors: Hyungsuk Alexander Yoon, William Thie, Yezdi Dordi, Andrew D. Bailey, III
  • Publication number: 20100009535
    Abstract: This invention pertains to methods and systems for fabricating semiconductor devices. One aspect of the present invention is a method of depositing a gapfill copper layer onto a barrier layer for semiconductor device metallization. In one embodiment, the method includes forming the barrier layer on a surface of a substrate and subjecting the barrier layer to a process condition so as to form a removable passivated surface on the barrier layer. The method further includes removing the passivated surface from the barrier layer and depositing the gapfill copper layer onto the barrier layer. Another aspect of the present invention is an integrated system for depositing a copper layer onto a barrier layer for semiconductor device metallization.
    Type: Application
    Filed: September 18, 2009
    Publication date: January 14, 2010
    Inventors: Yezdi Dordi, John Boyd, Fritz Redeker, William Thie, Tiruchirapalli Arunagiri, Alex Yoon
  • Publication number: 20090304914
    Abstract: The embodiments fill the need enabling deposition of a thin and conformal barrier layer, and a copper layer in the copper interconnect with good electro-migration performance and with reduced risk of stress-induce voiding of copper interconnect. Electromigration and stress-induced voiding are affected by the adhesion between the barrier layer and the copper layer. A functionalization layer is deposited over the barrier layer to enable the copper layer being deposit in the copper interconnect. The functionalization layer forms strong bonds with barrier layer and with copper to improve adhesion property between the two layers. An exemplary method of preparing a substrate surface of a substrate to deposit a functionalization layer over a metallic barrier layer of a copper interconnect to assist deposition of a copper layer in the copper interconnect in order to improve electromigration performance of the copper interconnect is provided.
    Type: Application
    Filed: December 13, 2006
    Publication date: December 10, 2009
    Applicant: Lam Research Corporation
    Inventors: Praveen Nalla, William Thie, John Boyd, Tiruchirapalli Arunagiri, Hyungsuk Alexander Yoon, Fritz C. Redeker, Yezdi Dordi
  • Patent number: 7592259
    Abstract: This invention pertains to methods and systems for fabricating semiconductor devices. One aspect of the present invention is a method of depositing a gapfill copper layer onto barrier layer for semiconductor device metallization. In one embodiment, the method includes forming the barrier layer on a surface of a substrate and subjecting the barrier layer to a process condition so as to form a removable passivated surface on the barrier layer. The method further includes removing the passivated surface from the barrier layer and depositing the gapfill copper layer onto the barrier layer. Another aspect of the present invention is an integrated system for depositing a copper layer onto a barrier layer for semiconductor device metallization.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: September 22, 2009
    Assignee: Lam Research Corporation
    Inventors: Yezdi Dordi, John Boyd, Fritz Redeker, William Thie, Tiruchirapalli Arunagiri, Alex Yoon
  • Patent number: 7582565
    Abstract: Broadly speaking, the present invention provides a method and an apparatus for planarizing a semiconductor wafer (“wafer”). More specifically, the present invention provides for depositing a planarizing layer over the wafer, wherein the planarizing layer serves to fill recessed areas present on a surface of the wafer. A planar member is positioned over and proximate to a top surface of the wafer. Positioning of the planar member serves to entrap electroless plating solution between the planar member and the wafer surface. Radiant energy is applied to the wafer surface to cause a temperature increase at an interface between the wafer surface and the electroless plating solution. The temperature increase in turn causes plating reactions to occur at the wafer surface. Material deposited through the plating reactions forms a planarizing layer that conforms to a planarity of the planar member.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: September 1, 2009
    Assignee: Lam Research Corporation
    Inventors: Fred C. Redeker, John Boyd, Yezdi Dordi, William Thie, Bob Maraschin
  • Publication number: 20090162537
    Abstract: One embodiment of the present invention is a method of fabricating an integrated circuit. The method includes providing a substrate having a metal and dielectric damascene metallization layer and depositing substantially on the metal a cap. After deposition of the cap, the substrate is cleaned with a solution comprising an amine to provide a pH for the cleaning solution of 7 to about 13. Another embodiment of the presented invention is a method of cleaning substrates. Still another embodiment of the present invention is a formulation for a cleaning solution.
    Type: Application
    Filed: December 13, 2008
    Publication date: June 25, 2009
    Inventors: Artur KOLICS, Shijian LI, Tiruchirapalli ARUNAGIRI, William THIE
  • Publication number: 20080280456
    Abstract: Methods for cleaning semiconductor wafers following chemical mechanical polishing are provided. An exemplary method exposes a wafer to a thermal treatment in an oxidizing environment followed by a thermal treatment in a reducing environment. The thermal treatment in the oxidizing environment both removes residues and oxidizes exposed copper surfaces to form a cupric oxide layer. The thermal treatment in the reducing environment then reduces the cupric oxide to elemental copper. This leaves the exposed copper clean and in condition for further processing, such as electroless plating.
    Type: Application
    Filed: May 8, 2007
    Publication date: November 13, 2008
    Inventors: Zhonghui Alex Wang, Tiruchirapalli Arunagiri, Fritz C. Redeker, Yezdi Dordi, John Boyd, Mikhail Korolik, Arthur M. Howald, William Thie, Praveen Nalla
  • Publication number: 20080254621
    Abstract: A dry-in/dry-out system is disclosed for wafer electroless plating. The system includes an upper zone for wafer ingress/egress and drying operations. Proximity heads are provided in the upper zone to perform the drying operations. The system also includes a lower zone for electroless plating operations. The lower zone includes an electroless plating apparatus that implements a wafer submersion by fluid upwelling method. The upper and lower zones of the system are enclosed by a dual-walled chamber, wherein the inner wall is a chemically inert plastic and the outer wall is a structural metal. The system interfaces with a fluid handling system which provides the necessary chemistry supply and control for the system. The system is ambient controlled. Also, the system interfaces with an ambient controlled managed transfer module (MTM).
    Type: Application
    Filed: April 16, 2007
    Publication date: October 16, 2008
    Applicant: Lam Research Corporation
    Inventors: William Thie, John M. Boyd, Fritz C. Redeker, Yezdi Dordi, John Parks, Tiruchirapalli Arunagiri, Aleksander Owczarz, Todd Balisky, Clint Thomas, Jacob Wylie
  • Publication number: 20080251148
    Abstract: A chemical fluid handling system is defined to supply a number of chemicals to a number of fluid inputs of a mixing manifold. The chemical fluid handling system includes a number of fluid recirculation loops for separately pre-conditioning and controlling the supply of each of the number of chemicals. Each of the fluid recirculation loops is defined to degas, heat, and filter a particular one of the number of chemical components. The mixing manifold is defined to mix the number of chemicals to form the electroless plating solution. The mixing manifold includes a fluid output connected to a supply line. The supply line is connected to supply the electroless plating solution to a fluid bowl within an electroless plating chamber.
    Type: Application
    Filed: April 16, 2007
    Publication date: October 16, 2008
    Applicant: Lam Research Corporation
    Inventors: William Thie, John M. Boyd, Fritz C. Redeker, Yezdi Dordi, John Parks, Tiruchirapalli Arunagiri, Aleksander Owczarz, Todd Balisky, Clint Thomas, Jacob Wylie
  • Publication number: 20080254225
    Abstract: A semiconductor wafer electroless plating apparatus includes a platen and a fluid bowl. The platen has a top surface defined to support a wafer, and an outer surface extending downward from a periphery of the top surface to a lower surface of the platen. The fluid bowl has an inner volume defined by an interior surface so as to receive the platen, and wafer to be supported thereon, within the inner volume. A seal is disposed around the interior surface of the fluid bowl so as to form a liquid tight barrier when engaged between the interior surface of the fluid bowl and the outer surface of the platen. A number of fluid dispense nozzles are positioned to dispense electroplating solution within the fluid bowl above the seal so as to rise up and flow over the platen, thereby flowing over the wafer when present on the platen.
    Type: Application
    Filed: April 16, 2007
    Publication date: October 16, 2008
    Applicant: Lam Research Corporation
    Inventors: William Thie, John M. Boyd, Fritz C. Redeker, Yezdi Dordi, John Parks, Tiruchirapalli Arunagiri, Aleksander Owczarz, Todd Balisky, Clint Thomas, Jacob Wylie
  • Publication number: 20080166885
    Abstract: Broadly speaking, the present invention provides a method and an apparatus for planarizing a semiconductor wafer (“wafer”). More specifically, the present invention provides for depositing a planarizing layer over the wafer, wherein the planarizing layer serves to fill recessed areas present on a surface of the wafer. A planar member is positioned over and proximate to a top surface of the wafer. Positioning of the planar member serves to entrap electroless plating solution between the planar member and the wafer surface. Radiant energy is applied to the wafer surface to cause a temperature increase at an interface between the wafer surface and the electroless plating solution. The temperature increase in turn causes plating reactions to occur at the wafer surface. Material deposited through the plating reactions forms a planarizing layer that conforms to a planarity of the planar member.
    Type: Application
    Filed: March 24, 2008
    Publication date: July 10, 2008
    Applicant: Lam Research Corporation
    Inventors: Fred C. Redeker, John Boyd, Yezdi Dordi, William Thie, Bob Maraschin
  • Publication number: 20080153291
    Abstract: Broadly speaking, a method and an apparatus are provided for depositing a material on a semiconductor wafer (“wafer”). More specifically, the method and apparatus provide for selective heating of a surface of the wafer exposed to an electroless plating solution. The selective heating is provided by applying radiant energy to the wafer surface. The selective heating of the wafer surface causes a temperature increase at an interface between the wafer surface and the electroless plating solution. The temperature increase at the interface in turn causes a plating reaction to occur at the wafer surface. Thus, material is deposited on the wafer surface through an electroless plating reaction that is initiated and controlled by varying the temperature of the wafer surface using an appropriately defined radiant energy source.
    Type: Application
    Filed: March 7, 2008
    Publication date: June 26, 2008
    Applicant: Lam Research Corporation
    Inventors: Yezdi Dordi, John Boyd, William Thie, Bob Maraschin, Fred C. Redeker, Joel M. Cook
  • Publication number: 20080152823
    Abstract: A self-limiting electroless plating process is provided to plate thin films with improved uniformity. The process comprises dispensing an electroless plating solution onto a substrate to form a quiescent solution layer from which a conformal plated layer plates onto a surface of the substrate by a redox reaction. The redox reaction occurs at the surface of the substrate between a reducing agent ion and a plating ion and produces an oxidized ion. Because the solution is quiescent, a boundary layer forms within the solution layer adjacent to the surface. The boundary layer is characterized by a concentration gradient of the oxidized ion. Diffusion of the reducing agent ion through the boundary layer controls the redox reaction. The quiescent solution layer can be maintained until the reducing agent ion in the solution layer is substantially depleted.
    Type: Application
    Filed: December 20, 2006
    Publication date: June 26, 2008
    Inventors: John Boyd, Yezdi Dordi, Tiruchirapalli Arunagiri, William Thie, Fritz C. Redeker, Praveen Nalla
  • Publication number: 20080146025
    Abstract: This invention pertains to methods and systems for fabricating semiconductor devices. One aspect of the present invention is a method of depositing a gapfill copper layer onto barrier layer for semiconductor device metallization. In one embodiment, the method includes forming the barrier layer on a surface of a substrate and subjecting the barrier layer to a process condition so as to form a removable passivated surface on the barrier layer. The method further includes removing the passivated surface from the barrier layer and depositing the gapfill copper layer onto the barrier layer. Another aspect of the present invention is an integrated system for depositing a copper layer onto a barrier layer for semiconductor device metallization.
    Type: Application
    Filed: December 18, 2006
    Publication date: June 19, 2008
    Inventors: Yezdi Dordi, John Boyd, Fritz Redeker, William Thie, Tiruchirapalli Arunagiri, Alex Yoon
  • Publication number: 20080142971
    Abstract: An interconnect structure is provided, including a layer of dielectric material having at least one opening and a first barrier layer on sidewalls defining the opening. A ruthenium-containing second barrier layer overlays the first barrier layer, the second barrier layer having a ruthenium zone, a ruthenium oxide zone, and a ruthenium-rich zone. The ruthenium zone is interposed between the first barrier layer and the ruthenium oxide zone. The ruthenium oxide zone is interposed between the ruthenium zone and the ruthenium-rich zone.
    Type: Application
    Filed: December 14, 2006
    Publication date: June 19, 2008
    Applicant: Lam Research Corporation
    Inventors: Yezdi Dordi, John M. Boyd, Fritz C. Redeker, William Thie, Tiruchirapalli Arunagiri, Hyungsuk Alexander Yoon
  • Patent number: 7368017
    Abstract: Broadly speaking, the present invention provides a method and an apparatus for planarizing a semiconductor wafer (“wafer”). More specifically, the present invention provides for depositing a planarizing layer over the wafer, wherein the planarizing layer serves to fill recessed areas present on a surface of the wafer. A planar member is positioned over and proximate to a top surface of the wafer. Positioning of the planar member serves to entrap electroless plating solution between the planar member and the wafer surface. Radiant energy is applied to the wafer surface to cause a temperature increase at an interface between the wafer surface and the electroless plating solution. The temperature increase in turn causes plating reactions to occur at the wafer surface. Material deposited through the plating reactions forms a planarizing layer that conforms to a planarity of the planar member.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: May 6, 2008
    Assignee: Lam Research Corporation
    Inventors: Fred C. Redeker, John Boyd, Yezdi Dordi, William Thie, Bob Maraschin
  • Patent number: 7358186
    Abstract: Broadly speaking, a method and an apparatus are provided for depositing a material on a semiconductor wafer (“wafer”). More specifically, the method and apparatus provide for selective heating of a surface of the wafer exposed to an electroless plating solution. The selective heating is provided by applying radiant energy to the wafer surface. The selective heating of the wafer surface causes a temperature increase at an interface between the wafer surface and the electroless plating solution. The temperature increase at the interface in turn causes a plating reaction to occur at the wafer surface. Thus, material is deposited on the wafer surface through an electroless plating reaction that is initiated and controlled by varying the temperature of the wafer surface using an appropriately defined radiant energy source.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: April 15, 2008
    Assignee: Lam Research Corporation
    Inventors: Yezdi Dordi, John Boyd, William Thie, Bob Maraschin, Fred C. Redeker, Joel M. Cook
  • Publication number: 20080085370
    Abstract: An electroless plating system is provided. The system includes a first vacuum chuck supporting a first wafer and a second vacuum chuck supporting a second wafer such that a top surface of the second wafer is opposing a top surface of the first wafer. The system also includes a fluid delivery system configured to deliver a plating solution to the top surface of the first wafer, wherein in response to delivery of the plating solution, the top surface of the second wafer is brought proximate to the top surface of the first wafer so that the plating solution contacts both top surfaces. A method for applying an electroless plating solution to a substrate is also provided.
    Type: Application
    Filed: October 5, 2006
    Publication date: April 10, 2008
    Inventors: William Thie, John M. Boyd, Yezdi Dordi, Fritz C. Redeker
  • Publication number: 20080057221
    Abstract: A cluster architecture and methods for processing a substrate are disclosed. The cluster architecture includes a lab-ambient controlled transfer module that is coupled to one or more wet substrate processing modules. The lab-ambient controlled transfer module and the one or more wet substrate processing modules are configured to manage a first ambient environment. A vacuum transfer module that is coupled to the lab-ambient controlled transfer module and one or more plasma processing modules is also provided. The vacuum transfer module and the one or more plasma processing modules are configured to manage a second ambient environment. And, a controlled ambient transfer module that is coupled to the vacuum transfer module and one or more ambient processing modules is also included. The controlled ambient transfer module and the one or more ambient processing modules are configured to manage a third ambient environment.
    Type: Application
    Filed: December 15, 2006
    Publication date: March 6, 2008
    Applicant: Lam Research Corporation
    Inventors: John Boyd, Yezdi Dordi, Tiruchirapalli Arunagiri, Benjamin Mooring, John Parks, William Thie, Fritz Redeker, Arthur Howald, Alan Schoepp, David Hemker