Patents by Inventor Wingyu Leung

Wingyu Leung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6732229
    Abstract: A memory redundancy scheme is provided for re-routing data signal paths to disconnect defective memory blocks in a memory array. Each memory block is provided with a corresponding routing unit. Each routing unit is coupled to its corresponding memory block and at least one additional adjacent memory block. The routing units are configured to route data between functional memory blocks and a data bus. The routing units are controlled by configuration values stored in a shifter circuit, which extends through the routing units. To replace a defective memory block, the address of the defective memory block is identified. Configuration values are serially loaded into the shifter circuit, wherein the configuration values are selected in response to the address of the defective memory block.
    Type: Grant
    Filed: February 14, 2000
    Date of Patent: May 4, 2004
    Assignee: Monolithic System Technology, Inc.
    Inventors: Wingyu Leung, Jui-Pin Tang
  • Patent number: 6714470
    Abstract: A semi-conductor memory device having a wide write data bandwidth is provided with high speed read-write circuitry having data amplifiers that are activated to accelerate amplification of write data signals being driven by write data drivers onto data lines of the cell array of the device during memory write cycles, as well as activated to amplify read data signals on the data lines during memory read cycles. Moreover, the data amplifiers are activatedin a self-timed manner. In one embodiment, the device is further provided with a read data buffer that is constituted with a regenerative latch and an input stage, and a write data buffer having multiple entries. The input stage of the read data buffer isolates or couples the regenerative latch to the data lines depending on whether the data lines are in a pre-charged state or not.
    Type: Grant
    Filed: September 25, 2001
    Date of Patent: March 30, 2004
    Assignee: Monolithic System Technology, Inc.
    Inventors: Wingyu Leung, Jui-Pin Tang
  • Patent number: 6707743
    Abstract: A method and apparatus for handling the refresh of a DRAM array or other memory array requiring periodic refresh operations so that the refresh does not require explicit control signaling nor handshake communication between the memory array and an external accessing client. The method and apparatus handles external accesses and refresh operations such that the refresh operations do not interfere with the external accesses under any conditions. As a result, an SRAM compatible device can be built from DRAM or 1-Transistor cells. A clock division scheme is implemented to allow N external accesses and one refresh operation to be performed during N consecutive clock cycles.
    Type: Grant
    Filed: April 3, 2002
    Date of Patent: March 16, 2004
    Assignee: Monolithic System Technology, Inc.
    Inventors: Wingyu Leung, Jae-Kwang Sim
  • Patent number: 6654295
    Abstract: A memory system that includes a DRAM cell that includes an access transistor and a storage capacitor. The storage capacitor is fabricated by forming a polysilicon crown electrode, a dielectric layer overlying the polysilicon crown, and a polysilicon plate electrode overlying the dielectric layer. A first set of thermal cycles are performed during the formation of the storage capacitor to form and anneal the elements of the capacitor structure. Subsequently, shallow P+ and/or N+ regions are formed by ion implantation, and metal salicide is formed. As a result, the relatively high first set of thermal cycles required to form the capacitor structure does not adversely affect the shallow P+ and N+ regions or the metal salicide. A second set of thermal cycles, which are comparable to or less than the first set of thermal cycles, are performed during the formation of the shallow regions and the metal salicide.
    Type: Grant
    Filed: January 11, 2002
    Date of Patent: November 25, 2003
    Assignee: Monolithic System Technology, Inc.
    Inventors: Wingyu Leung, Fu-Chieh Hsu
  • Patent number: 6642098
    Abstract: A memory system that includes a dynamic random access memory (DRAM) cell including an access transistor and a capacitor structure fabricated in a semiconductor substrate. The capacitor structure is fabricated by forming a cavity in a shallow trench isolation region, thereby exposing a sidewall region of the substrate below the upper surface of the substrate. A dielectric layer is formed over the upper surface and the sidewall region of the substrate. A polysilicon layer is formed over the dielectric layer and patterned to form a capacitor electrode of the capacitor structure that extends over the upper surface and the sidewall region of the substrate. The capacitor electrode is partially recessed below the upper surface of the substrate. The polysilicon layer is also patterned to form the gate electrode of the access transistor.
    Type: Grant
    Filed: February 25, 2003
    Date of Patent: November 4, 2003
    Assignee: Monolithic System Technology, Inc.
    Inventors: Wingyu Leung, Fu-Chieh Hsu
  • Publication number: 20030151072
    Abstract: A memory system that includes a dynamic random access memory (DRAM) cell including an access transistor and a capacitor structure fabricated in a semiconductor substrate. The capacitor structure is fabricated by forming a cavity in a shallow trench isolation region, thereby exposing a sidewall region of the substrate below the upper surface of the substrate. A dielectric layer is formed over the upper surface and the sidewall region of the substrate. A polysilicon layer is formed over the dielectric layer and patterned to form a capacitor electrode of the capacitor structure that extends over the upper surface and the sidewall region of the substrate. The capacitor electrode is partially recessed below the upper surface of the substrate. The polysilicon layer is also patterned to form the gate electrode of the access transistor.
    Type: Application
    Filed: February 25, 2003
    Publication date: August 14, 2003
    Applicant: Monolithic System Technology, Inc.
    Inventors: Wingyu Leung, Fu-Chieh Hsu
  • Publication number: 20030151071
    Abstract: A memory system that includes a dynamic random access memory (DRAM) cell including an access transistor and a capacitor structure fabricated in a semiconductor substrate. The capacitor structure is fabricated by forming a cavity in a shallow trench isolation region, thereby exposing a sidewall region of the substrate below the upper surface of the substrate. A dielectric layer is formed over the upper surface and the sidewall region of the substrate. A polysilicon layer is formed over the dielectric layer and patterned to form a capacitor electrode of the capacitor structure that extends over the upper surface and the sidewall region of the substrate. The capacitor electrode is partially recessed below the upper surface of the substrate. The polysilicon layer is also patterned to form the gate electrode of the access transistor.
    Type: Application
    Filed: February 25, 2003
    Publication date: August 14, 2003
    Applicant: Monolithic System Technology, Inc.
    Inventors: Wingyu Leung, Fu-Chieh Hsu
  • Patent number: 6573548
    Abstract: A memory system that includes a dynamic random access memory (DRAM) cell including an access transistor and a capacitor structure fabricated in a semiconductor substrate. The capacitor structure is fabricated by forming a cavity in a shallow trench isolation region, thereby exposing a sidewall region of the substrate below the upper surface of the substrate. A dielectric layer is formed over the upper surface and the sidewall region of the substrate. A polysilicon layer is formed over the dielectric layer and patterned to form a capacitor electrode of the capacitor structure that extends over the upper surface and the sidewall region of the substrate. The capacitor electrode is partially recessed below the upper surface of the substrate. The polysilicon layer is also patterned to form the gate electrode of the access transistor.
    Type: Grant
    Filed: November 2, 2001
    Date of Patent: June 3, 2003
    Assignee: Monolithic System Technology, Inc.
    Inventors: Wingyu Leung, Fu-Chieh Hsu
  • Publication number: 20030097535
    Abstract: A method and structure for implementing a DRAM memory array as a second level cache memory in a computer system. The computer system includes a central processing unit (CPU), a first level SRAM cache memory, a CPU bus coupled to the CPU, and a second level cache memory which includes a DRAM array coupled to the CPU bus. When accessing the DRAM array, row access and column decoding operations are performed in a self-timed asynchronous manner. Predetermined sequences of column select operations are then performed in a synchronous manner with respect to a clock signal. A widened data path is provided to the DRAM array, effectively increasing the data rate of the DRAM array. By operating the DRAM array at a higher data rate than the CPU bus, additional time is provided for precharging the DRAM array. As a result, the precharging of the DRAM array is transparent to the CPU bus. A structure and method control the refresh and internal operations of the DRAM array.
    Type: Application
    Filed: December 23, 2002
    Publication date: May 22, 2003
    Inventors: Fu-Chieh Hsu, Wingyu Leung
  • Publication number: 20030093744
    Abstract: A memory device that uses error correction code (ECC) circuitry to improve the reliability of the memory device in view of single-bit errors caused by hard failure or soft error. A write buffer is used to post write data, so that ECC generation and memory write array operation can be carried out in parallel. As a result there is no penalty in write latency or memory cycle time due to ECC generation. A write-back buffer is used to post corrected ECC words during read operations, so that write-back of corrected ECC words does not need to take place during the same cycle that data is read. Instead, write-back operations are performed during idle cycles when no external memory access is requested, such that the write back operation does not impose a penalty on memory cycle time or affect memory access latency.
    Type: Application
    Filed: November 14, 2001
    Publication date: May 15, 2003
    Applicant: Monilithic System Technology, Inc.
    Inventors: Wingyu Leung, Fu-Chieh Hsu
  • Publication number: 20030067830
    Abstract: A memory system is provided that includes an array of memory cells that require periodic refresh, and a temperature-adaptive refresh controller. Data retention time of the memory cells decreases exponentially as temperature increases. The temperature-adaptive refresh controller selects the refresh period of the memory cells in response to the subthreshold current of a reference transistor. The subthreshold current of the reference transistor increases exponentially as temperature increases As a result, the refresh period is empirically tied to the data retention time. Consequently, the power required for refresh operations decreases as temperature decreases. Power is therefore conserved in applications that operate predominantly at room temperature.
    Type: Application
    Filed: November 20, 2002
    Publication date: April 10, 2003
    Applicant: Monolithic System Technology, Inc.
    Inventors: Wingyu Leung, Jae-Kwang Sim
  • Publication number: 20030039163
    Abstract: A method and apparatus for handling the refresh of a DRAM array or other memory array requiring periodic refresh operations so that the refresh does not require explicit control signaling nor handshake communication between the memory array and an external accessing client. The method and apparatus handles external accesses and refresh operations such that the refresh operations do not interfere with the external accesses under any conditions. As a result, an SRAM compatible device can be built from DRAM or 1-Transistor cells. A clock division scheme is implemented to perform external accesses during one portion of a clock cycle, and required refresh operations during another portion of the same clock cycle.
    Type: Application
    Filed: October 23, 2002
    Publication date: February 27, 2003
    Applicant: Monolithic System Technology, Inc.
    Inventor: Wingyu Leung
  • Patent number: 6512691
    Abstract: A non-volatile memory cell fabricated using a conventional logic process. As used herein, a conventional logic process is defined as a semiconductor process that implements single-well or twin-well technology and uses only one layer of polysilicon. The non-volatile memory cell uses a thin gate oxide (i.e., 1.5 nm to 6 nm) commonly available in a conventional logic process. This non-volatile memory cell can be programmed and erased using relatively low voltages. As a result, the voltages required to program and erase can be provided by transistors readily available in a conventional logic process. The program and erase voltages are precisely controlled to avoid the need for a triple-well process. In one embodiment, the non-volatile memory cells are configured to form a non-volatile memory block that is used in a system-on-a-chip. In this embodiment, the contents of the non-volatile memory cells are read out and stored (with or without data decompression operations) into on-chip or off-chip volatile memory.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: January 28, 2003
    Assignee: Monolithic System Technology, Inc.
    Inventors: Fu-Chieh Hsu, Wingyu Leung
  • Patent number: 6509595
    Abstract: A memory system that includes a dynamic random access memory (DRAM) cell that includes an access transistor and a storage capacitor. The storage capacitor of the DRAM cell is fabricated by forming a polysilicon crown electrode, a dielectric layer overlying the polysilicon crown, and a polysilicon plate electrode overlying the dielectric layer. A first set of thermal cycles are performed during the formation of the storage capacitor to form and anneal the elements of the capacitor structure. After the first set of thermal cycles are complete, shallow P+ and/or N+ regions are formed by ion implantation, and metal salicide is formed. As a result, the relatively high first set of thermal cycles required to form the capacitor structure does not adversely affect the shallow P+ and N+ regions or the metal salicide. A second set of thermal cycles, which are comparable to or less than the first set of thermal cycles, are performed during the formation of the shallow regions and the metal salicide.
    Type: Grant
    Filed: October 25, 1999
    Date of Patent: January 21, 2003
    Assignee: Monolithic System Technology, Inc.
    Inventors: Wingyu Leung, Fu-Chieh Hsu
  • Patent number: 6510492
    Abstract: A structure and method of controlling data transfer between a memory and a bus. For write operations, a write buffer is coupled between the bus and the memory array. Data that has been transferred into the write buffer is transferred from the write buffer to the memory array at a faster rate than data is transferred from the bus to the write buffer. For read operations, a read buffer is coupled between the bus and the memory array. Data is transferred from the memory array to the read buffer at a faster rate than data is transferred from the read buffer to the bus.
    Type: Grant
    Filed: May 8, 2001
    Date of Patent: January 21, 2003
    Assignee: Monolithic System Technology, Inc.
    Inventors: Fu-Chieh Hsu, Wingyu Leung
  • Patent number: 6504780
    Abstract: A method and apparatus for handling the refresh of a DRAM array or other memory array requiring periodic refresh operations so that the refresh does not require explicit control signaling nor handshake communication between the memory array and an external accessing client. The method and apparatus handles external accesses and refresh operations such that the refresh operations do not interfere with the external accesses under any conditions. As a result, an SRAM compatible device can be built from DRAM or 1-Transistor cells. A clock division scheme is implemented to perform external accesses during one portion of a clock cycle, and required refresh operations during another portion of the same clock cycle.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: January 7, 2003
    Assignee: Monolithic System Technology, Inc.
    Inventor: Wingyu Leung
  • Publication number: 20030001181
    Abstract: A memory system that includes a DRAM cell that includes an access transistor and a storage capacitor. The storage capacitor is fabricated by forming a polysilicon crown electrode, a dielectric layer overlying the polysilicon crown, and a polysilicon plate electrode overlying the dielectric layer. A first set of thermal cycles are performed during the formation of the storage capacitor to form and anneal the elements of the capacitor structure. Subsequently, shallow P+ and/or N+ regions are formed by ion implantation, and metal salicide is formed. As a result, the relatively high first set of thermal cycles required to form the capacitor structure does not adversely affect the shallow P+ and N+ regions or the metal salicide. A second set of thermal cycles, which are comparable to or less than the first set of thermal cycles, are performed during the formation of the shallow regions and the metal salicide.
    Type: Application
    Filed: August 28, 2002
    Publication date: January 2, 2003
    Applicant: Monolithic System Technology, Inc.
    Inventors: Wingyu Leung, Fu-Chieh Hsu
  • Patent number: 6496437
    Abstract: A method is provided for operating a memory system having a plurality of memory blocks. The method includes (1) periodically asserting a timing signal; (2) asserting a refresh pending signal in each of the memory blocks when the asserted timing signal is received; (3) within each of the memory blocks, performing a refresh operation if the refresh pending signal in the memory block is asserted and an idle cycle exists in the memory block; (4) within each of the memory blocks, asserting a refresh acknowledge signal if a refresh operation is performed in the memory block; (5) within each of the memory blocks, de-asserting the refresh pending signal in the memory block if the refresh acknowledge signal is asserted in the memory block; (6) asserting a refresh forcing signal if the refresh pending signal in any of the memory blocks is asserted when the timing signal is asserted; and (7) forcing an idle cycle in all of the memory blocks if the refresh forcing signal is asserted.
    Type: Grant
    Filed: February 27, 2001
    Date of Patent: December 17, 2002
    Assignee: Monolithic Systems Technology, Inc.
    Inventor: Wingyu Leung
  • Publication number: 20020154541
    Abstract: A non-volatile memory cell fabricated using a conventional logic process. As used herein, a conventional logic process is defined as a semiconductor process that implements single-well or twin-well technology and uses only one layer of polysilicon. The non-volatile memory cell uses a thin gate oxide (i.e., 1.5 nm to 6 nm) commonly available in a conventional logic process. This non-volatile memory cell can be programmed and erased using relatively low voltages. As a result, the voltages required to program and erase can be provided by transistors readily available in a conventional logic process. The program and erase voltages are precisely controlled to avoid the need for a triple-well process. In one embodiment, the non-volatile memory cells are configured to form a non-volatile memory block that is used in a system-on-a-chip. In this embodiment, the contents of the non-volatile memory cells are read out and stored (with or without data decompression operations) into on-chip or off-chip volatile memory.
    Type: Application
    Filed: June 7, 2002
    Publication date: October 24, 2002
    Applicant: Monolithic System Technology, Inc.
    Inventors: Fu-Chieh Hsu, Wingyu Leung
  • Patent number: RE38482
    Abstract: A ring oscillator includes an even-numbered plurality of ring coupled delay stages. Each delay stage includes a differential amplifier, a voltage clamping circuit, and a current source. The differential amplifier receives first and second input signals from a preceding delay stage. The differential amplifier provides a first output signal and a complementary second output signal at first and second nodes, respectively. The voltage clamping circuit is coupled between the first and second nodes to limit a peak-to-peak voltage swing of each of the first and second output signals. The current source is coupled to the differential amplifier and varies a bias current in accordance with a delay bias voltage.
    Type: Grant
    Filed: August 2, 2000
    Date of Patent: March 30, 2004
    Assignee: Rambus Inc.
    Inventors: Wingyu Leung, Mark A. Horowitz