Patents by Inventor Wolfgang Hinz

Wolfgang Hinz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250116628
    Abstract: Various cell analysis systems of the present teachings can measure the electrical and metabolic activity of single, living cells with subcellular addressability and simultaneous data acquisition for between about 10 cells to about 500,000 cells in a single analysis. Various sensor array devices of the present teachings can have sensor arrays with between 20 million to 660 million ChemFET sensors built into a massively paralleled array and can provide for simultaneous measurement of cells with data acquisition rates in the kilohertz (kHz) range. As various ChemFET sensor arrays of the present teachings can detect chemical analytes as well detect changes in cell membrane potential, various cell analysis systems of the present teachings also provide for the controlled chemical and electrical interrogation of cells.
    Type: Application
    Filed: October 22, 2024
    Publication date: April 10, 2025
    Inventors: Wolfgang HINZ, John DONOHUE, Daniel BEACHMAN
  • Patent number: 12234452
    Abstract: The invention provides particle compositions having applications in nucleic acid analysis. Nucleic acid polymer particles of the invention allow polynucleotides to be attached throughout their volumes for higher loading capacities than those achievable solely with surface attachment. In one aspect, nucleic acid polymer particles of the invention comprise polyacrylamide particles with uniform size distributions having low coefficients of variations, which result in reduced particle-to-particle variation in analytical assays. Such particle compositions are used in various amplification reactions to make amplicon libraries from nucleic acid fragment libraries.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: February 25, 2025
    Assignee: Life Technologies Corporation
    Inventors: Wolfgang Hinz, John Leamon, David Light, Jonathan M. Rothberg
  • Publication number: 20250043342
    Abstract: A sensor apparatus includes a substrate, a semiconductor device disposed over the substrate, the semiconductor device having a surface electrode structure, and a saccharide coating formed over the surface electrode structure. The saccharide coating can be removed prior to use. The semiconductor device can further include a well and optionally a bead disposed in the well.
    Type: Application
    Filed: October 18, 2024
    Publication date: February 6, 2025
    Inventors: Philip WAGGONER, James A. BALL, Michael L. MINTO, David M. COX, Wolfgang HINZ, Alexander MASTROIANNI, Jeremy GRAY, Marc GLAZER, Scott PARKER, Kimberly GORRELL
  • Publication number: 20240426775
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Application
    Filed: June 3, 2024
    Publication date: December 26, 2024
    Inventors: James BUSTILLO, Wolfgang HINZ, Kim JOHNSON, Jonathan ROTHBERG
  • Patent number: 12146134
    Abstract: The present invention provides novel microfluidic devices and methods that are useful for performing high-throughput screening assays and combinatorial chemistry. The invention provides for aqueous based emulsions containing uniquely labeled cells, enzymes, nucleic acids, etc., wherein the emulsions further comprise primers, labels, probes, and other reactants. An oil based carrier-fluid envelopes the emulsion library on a microfluidic device, such that a continuous channel provides for flow of the immiscible fluids, to accomplish pooling, coalescing, mixing, sorting, detection, etc., of the emulsion library.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: November 19, 2024
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Darren Roy Link, Laurent Boitard, Jeffrey Branciforte, Yves Charles, Gilbert Feke, John Q. Lu, David Marran, Ahmadali Tabatabai, Michael Weiner, Wolfgang Hinz, Jonathan M. Rothberg
  • Patent number: 12146853
    Abstract: Methods and apparatus relating to FET arrays for monitoring chemical and/or biological reactions such as nucleic acid sequencing-by-synthesis reactions. Some methods provided herein relate to improving signal (and also signal to noise ratio) from released hydrogen ions during nucleic acid sequencing reactions.
    Type: Grant
    Filed: December 11, 2023
    Date of Patent: November 19, 2024
    Assignee: Life Technologies Corporation
    Inventors: James Bustillo, Mark J. Milgrew, Wolfgang Hinz, John Leamon, John Davidson, Martin Huber, Antoine M. van Oijen, Jonathan Rothberg
  • Patent number: 12140560
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Grant
    Filed: August 16, 2022
    Date of Patent: November 12, 2024
    Assignee: Life Technologies Corporation
    Inventors: Jonathan Rothberg, Wolfgang Hinz, Kim Johnson, James Bustillo
  • Patent number: 12140559
    Abstract: Various cell analysis systems of the present teachings can measure the electrical and metabolic activity of single, living cells with subcellular addressability and simultaneous data acquisition for between about 10 cells to about 500,000 cells in a single analysis. Various sensor array devices of the present teachings can have sensor arrays with between 20 million to 660 million ChemFET sensors built into a massively paralleled array and can provide for simultaneous measurement of cells with data acquisition rates in the kilohertz (kHz) range. As various ChemFET sensor arrays of the present teachings can detect chemical analytes as well detect changes in cell membrane potential, various cell analysis systems of the present teachings also provide for the controlled chemical and electrical interrogation of cells.
    Type: Grant
    Filed: December 22, 2022
    Date of Patent: November 12, 2024
    Assignee: Life Technologies Corporation
    Inventors: Wolfgang Hinz, John Donohue, Daniel Beacham
  • Patent number: 12139758
    Abstract: A sensor apparatus includes a substrate, a semiconductor device disposed over the substrate, the semiconductor device having a surface electrode structure, and a saccharide coating formed over the surface electrode structure. The saccharide coating can be removed prior to use. The semiconductor device can further include a well and optionally a bead disposed in the well.
    Type: Grant
    Filed: January 8, 2024
    Date of Patent: November 12, 2024
    Assignee: Life Technologies Corporation
    Inventors: Philip Waggoner, James A. Ball, Michael L. Minto, David M. Cox, Wolfgang Hinz, Alexander Mastroianni, Jeremy Gray, Marc Glazer, Scott Parker, Kimberly Gorrell
  • Patent number: 12122859
    Abstract: A method of forming a particle includes, in a disperse phase within an aqueous suspension, polymerizing a plurality of mer units of a hydrophilic monomer having a hydrophobic protection group, thereby forming a polymeric particle including a plurality of the hydrophobic protection groups. The method further includes converting the polymeric particle to a hydrophilic particle.
    Type: Grant
    Filed: January 26, 2023
    Date of Patent: October 22, 2024
    Assignees: Life Technologies AS, Life Technologies Corporation
    Inventors: Geir Fonnum, Grete Irene Modahl, Nini Hofsloekken Kjus, Astrid Evenroed Molteberg, Diem Thuy Thi Tran, Jo Aaserud, M. Talha Gokmen, Steven M. Menchen, Carl Fuller, Luisa Andruzzi, Wolfgang Hinz
  • Publication number: 20240309443
    Abstract: A sensor apparatus includes a substrate, a semiconductor device disposed over the substrate, the semiconductor device having a surface electrode structure, and a saccharide coating formed over the surface electrode structure. The saccharide coating can be removed prior to use. The semiconductor device can further include a well and optionally a bead disposed in the well.
    Type: Application
    Filed: January 8, 2024
    Publication date: September 19, 2024
    Inventors: Philip WAGGONER, James A. BALL, Michael L. MINTO, David M. COX, Wolfgang HINZ, Alexander MASTROIANNI, Jeremy GRAY, Marc GLAZER, Scott PARKER, Kimberly GORRELL
  • Patent number: 12066399
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Grant
    Filed: July 14, 2023
    Date of Patent: August 20, 2024
    Assignee: Life Technologies Corporation
    Inventors: Jonathan M. Rothberg, Wolfgang Hinz, Kim L. Johnson, James Bustillo
  • Publication number: 20240201126
    Abstract: Methods and apparatus relating to FET arrays for monitoring chemical and/or biological reactions such as nucleic acid sequencing-by-synthesis reactions. Some methods provided herein relate to improving signal (and also signal to noise ratio) from released hydrogen ions during nucleic acid sequencing reactions.
    Type: Application
    Filed: December 11, 2023
    Publication date: June 20, 2024
    Inventors: James BUSTILLO, Mark J. MILGREW, Wolfgang HINZ, John LEAMON, John DAVIDSON, Martin HUBER, Antoine M. VAN OIJEN, Jonathan ROTHBERG
  • Publication number: 20240159702
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Application
    Filed: July 14, 2023
    Publication date: May 16, 2024
    Inventors: Jonathan M. ROTHBERG, Wolfgang HINZ, Kim L. JOHNSON, James BUSTILLO
  • Patent number: 11879156
    Abstract: A sensor apparatus includes a substrate, a semiconductor device disposed over the substrate, the semiconductor device having a surface electrode structure, and a saccharide coating formed over the surface electrode structure. The saccharide coating can be removed prior to use. The semiconductor device can further include a well and optionally a bead disposed in the well.
    Type: Grant
    Filed: August 10, 2022
    Date of Patent: January 23, 2024
    Assignee: Life Technologies Corporation
    Inventors: Phil Waggoner, James A. Ball, Wolfgang Hinz, Michael L. Minto, Scott Parker, David M. Cox, Alexander Mastroianni, Jeremy Gray, Marc Glazer, Kimberly Gorrell
  • Patent number: 11874250
    Abstract: Methods and apparatus relating to FET arrays for monitoring chemical and/or biological reactions such as nucleic acid sequencing-by-synthesis reactions. Some methods provided herein relate to improving signal (and also signal to noise ratio) from released hydrogen ions during nucleic acid sequencing reactions.
    Type: Grant
    Filed: August 31, 2022
    Date of Patent: January 16, 2024
    Assignee: Life Technologies Corporation
    Inventors: Jonathan M. Rothberg, Wolfgang Hinz, John F. Davidson, Antoine M. van Oijen, John Leamon, Martin Huber, Mark James Milgrew, James Bustillo
  • Publication number: 20230324368
    Abstract: Systems, devices and methods for cell analysis provide an end user with real-time cell analysis and imaging of single cells in a population. Various cell analysis systems can provide both optical imaging, as well as electroscopic imaging, which is an image of cellular response as detected by sensors covering a cell footprint or cellular efflux. An automated fluidic system can provide an end-user selected sequence of reagents to cells, while precision controlled sensor array device thermostatting, and analysis compartment environmental control provide consistency in the cell analysis system environment.
    Type: Application
    Filed: June 15, 2023
    Publication date: October 12, 2023
    Inventors: Daniel BEACHAM, Wolfgang HINZ, John DONOHUE, Scott PARKER
  • Patent number: 11732297
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Grant
    Filed: May 6, 2022
    Date of Patent: August 22, 2023
    Assignee: Life Technologies Corporation
    Inventors: Jonathan Rothberg, Wolfgang Hinz, Kim Johnson, James Bustillo
  • Publication number: 20230175046
    Abstract: A method of forming a polymer matrix array includes applying an aqueous solution into wells of a well array. The aqueous solution includes polymer precursors. The method further includes applying an immiscible fluid over the well array to isolate the aqueous solution within the wells of the well array and polymerizing the polymer precursors isolated in the wells of the well array to form the polymer matrix array. An apparatus includes a sensor array, a well array corresponding to the sensor array, and an array of polymer matrices disposed in the well array.
    Type: Application
    Filed: February 1, 2023
    Publication date: June 8, 2023
    Inventors: David LIGHT, Wolfgang HINZ, Ronald CICERO, Christina INMAN, Paul KENNEY, Alexander MASTROIANNI, Roman ROZHKOV, Yufang WANG, Jeremy GRAY, Marc GLAZER, Dmitriy GREMYACHINSKIY
  • Publication number: 20230167210
    Abstract: A method of forming a particle includes, in a disperse phase within an aqueous suspension, polymerizing a plurality of mer units of a hydrophilic monomer having a hydrophobic protection group, thereby forming a polymeric particle including a plurality of the hydrophobic protection groups. The method further includes converting the polymeric particle to a hydrophilic particle.
    Type: Application
    Filed: January 26, 2023
    Publication date: June 1, 2023
    Inventors: Geir FONNUM, Grete Irene MODAHL, Nini Hofsloekken KJUS, Astrid Evenroed MOLTEBERG, Diem Thuy Thi TRAN, Jo AASERUD, M. Talha GOKMEN, Steven M. MENCHEN, Carl FULLER, Luisa ANDRUZZI, Wolfgang HINZ