Patents by Inventor Wolfgang Hinz

Wolfgang Hinz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11339430
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: May 24, 2022
    Assignee: Life Technologies Corporation
    Inventors: Jonathan Rothberg, Wolfgang Hinz, Kim Johnson, James Bustillo
  • Patent number: 11319587
    Abstract: The disclosure relates to novel particle compositions and methods of making said compositions having applications in nucleic acid analysis, as well as apparatuses and systems for the same.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: May 3, 2022
    Assignee: Life Technologies Corporation
    Inventors: Wolfgang Hinz, David Light, Todd Rearick, James A. Ball
  • Publication number: 20210325248
    Abstract: Disclosed herein are methods and systems for spectrometric analysis of samples. In some cases, the spectrometric analysis is Raman spectrometry. The methods and systems may be used to identify one or more characteristics of a sample, such as the identity of and the quantity of a molecule within the sample. In some embodiments, the methods and devices provide for rapid sample analysis that is more accurate, precise and cost-effective than traditional methods.
    Type: Application
    Filed: November 24, 2020
    Publication date: October 21, 2021
    Inventors: Adam Daniel CLARK-JOSEPH, David LIGHT, Wolfgang HINZ
  • Publication number: 20210155726
    Abstract: A method of forming a particle includes, in a disperse phase within an aqueous suspension, polymerizing a plurality of mer units of a hydrophilic monomer having a hydrophobic protection group, thereby forming a polymeric particle including a plurality of the hydrophobic protection groups. The method further includes converting the polymeric particle to a hydrophilic particle.
    Type: Application
    Filed: February 2, 2021
    Publication date: May 27, 2021
    Inventors: Geir FONNUM, Grete Irene MODAHL, Nini Hofsloekken KJUS, Astrid Evenroed MOLTEBERG, Diem Thuy Thi TRAN, Jo AASERUD, M. Tahla GOKMEN, Steven M. MENCHEN, Carl FULLER, Luisa ANDRUZZI, Wolfgang HINZ
  • Publication number: 20210109060
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Application
    Filed: October 9, 2020
    Publication date: April 15, 2021
    Applicant: Life Technologies Corporation
    Inventors: Jonathan M. ROTHBERG, Wolfgang HINZ, Kim L. JOHNSON, James BUSTILLO
  • Patent number: 10947333
    Abstract: A method of forming a particle includes, in a disperse phase within an aqueous suspension, polymerizing a plurality of mer units of a hydrophilic monomer having a hydrophobic protection group, thereby forming a polymeric particle including a plurality of the hydrophobic protection groups. The method further includes converting the polymeric particle to a hydrophilic particle.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: March 16, 2021
    Assignees: LIFE TECHNOLOGIES CORPORATION, LIFE TECHNOLOGIES AS
    Inventors: Geir Fonnum, Grete Irene Modahl, Nini Hofsloekken Kjus, Astrid Evenroed Molteberg, Diem Thuy Thi Tran, Jo Aaserud, Muhammed Gokmen, Steven M. Menchen, Carl Fuller, Luisa Andruzzi, Wolfgang Hinz
  • Publication number: 20210047686
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in the concentration of inorganic pyrophosphate (PPi), hydrogen ions, and nucleotide triphosphates.
    Type: Application
    Filed: May 22, 2020
    Publication date: February 18, 2021
    Inventors: Jonathan M. Rothberg, Wolfgang Hinz, Kim L. Johnson, James Bustillo, John Leamon, Jonathan Schultz
  • Publication number: 20200354780
    Abstract: A method of forming a polymer matrix array includes applying an aqueous solution into wells of a well array. The aqueous solution includes polymer precursors. The method further includes applying an immiscible fluid over the well array to isolate the aqueous solution within the wells of the well array and polymerizing the polymer precursors isolated in the wells of the well array to form the polymer matrix array. An apparatus includes a sensor array, a well array corresponding to the sensor array, and an array of polymer matrices disposed in the well array.
    Type: Application
    Filed: July 24, 2020
    Publication date: November 12, 2020
    Inventors: David LIGHT, Wolfgang HINZ, Ronald CICERO, Christina INMAN, Paul KENNEY, Alexander MASTROIANNI, Roman ROZHKOV, Yufang WANG, Jeremy GRAY, Marc GLAZER, Dmitriy GREMYACHINSKIY
  • Patent number: 10816506
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: October 27, 2020
    Assignee: Life Technologies Corporation
    Inventors: Jonathan Rothberg, Wolfgang Hinz, Kim Johnson, James Bustillo
  • Publication number: 20200332356
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Application
    Filed: April 10, 2020
    Publication date: October 22, 2020
    Inventors: Jonathan Rothberg, Wolfgang HINZ, Kim Johnson, James Bustillo
  • Patent number: 10738353
    Abstract: A method of forming a polymer matrix array includes applying an aqueous solution into wells of a well array. The aqueous solution includes polymer precursors. The method further includes applying an immiscible fluid over the well array to isolate the aqueous solution within the wells of the well array and polymerizing the polymer precursors isolated in the wells of the well array to form the polymer matrix array. An apparatus includes a sensor array, a well array corresponding to the sensor array, and an array of polymer matrices disposed in the well array.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: August 11, 2020
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: David Light, Wolfgang Hinz, Ronald Cicero, Christina Inman, Paul Kenney, Alexander Mastroianni, Roman Rozhkov, Yufang Wang, Jeremy Gray, Marc Glazer, Dmitriy Gremyachinskiy
  • Publication number: 20200239877
    Abstract: The invention provides particle compositions having applications in nucleic acid analysis. Nucleic acid polymer particles of the invention allow polynucleotides to be attached throughout their volumes for higher loading capacities than those achievable solely with surface attachment. In one aspect, nucleic acid polymer particles of the invention comprise polyacrylamide particles with uniform size distributions having low coefficients of variations, which result in reduced particle-to-particle variation in analytical assays. Such particle compositions are used in various amplification reactions to make amplicon libraries from nucleic acid fragment libraries.
    Type: Application
    Filed: April 6, 2020
    Publication date: July 30, 2020
    Inventors: Wolfgang HINZ, John LEAMON, David LIGHT, Jonathan M. ROTHBERG
  • Patent number: 10724086
    Abstract: A sensor apparatus includes a substrate, a semiconductor device disposed over the substrate, the semiconductor device having a surface electrode structure, and a saccharide coating formed over the surface electrode structure. The saccharide coating can be removed prior to use. The semiconductor device can further include a well and optionally a bead disposed in the well.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: July 28, 2020
    Assignee: Life Technologies Corporation
    Inventors: Phil Waggoner, James A. Ball, Wolfgang Hinz, Michael L. Minto, Scott Parker, David M. Cox, Alexander Mastroianni, Jeremy Gray, Marc Glazer, Kimberly Gorrell
  • Publication number: 20200216893
    Abstract: A sensor apparatus includes a substrate, a semiconductor device disposed over the substrate, the semiconductor device having a surface electrode structure, and a saccharide coating formed over the surface electrode structure. The saccharide coating can be removed prior to use. The semiconductor device can further include a well and optionally a bead disposed in the well.
    Type: Application
    Filed: March 20, 2020
    Publication date: July 9, 2020
    Inventors: Phil Waggoner, James A. Ball, Wolfgang Hinz, Michael L. Minto, Scott Parker, David M. Cox, Alexander Mastroianni, Jeremy Gray, Marc Glazer, Kimberly Gorrell
  • Publication number: 20200132622
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Application
    Filed: November 8, 2019
    Publication date: April 30, 2020
    Inventors: Jonathan ROTHBERG, Wolfgang HINZ, Kim JOHNSON, James BUSTILLO
  • Patent number: 10633699
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: April 28, 2020
    Assignee: Life Technologies Corporation
    Inventors: Jonathan Rothberg, Wolfgang Hinz, Kim Johnson, James Bustillo
  • Patent number: 10633652
    Abstract: The present invention provides novel microfluidic devices and methods that are useful for performing high-throughput screening assays and combinatorial chemistry. The invention provides for aqueous based emulsions containing uniquely labeled cells, enzymes, nucleic acids, etc., wherein the emulsions further comprise primers, labels, probes, and other reactants. An oil based carrier-fluid envelopes the emulsion library on a microfluidic device, such that a continuous channel provides for flow of the immiscible fluids, to accomplish pooling, coalescing, mixing, sorting, detection, etc., of the emulsion library.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: April 28, 2020
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Darren Roy Link, Laurent Boitard, Jeffrey Branciforte, Yves Charles, Gilbert Feke, John Q. Lu, David Marran, Ahmadali Tabatabai, Michael Weiner, Wolfgang Hinz, Jonathan M. Rothberg
  • Patent number: 10619201
    Abstract: A sensor apparatus includes a substrate, a semiconductor device disposed over the substrate, the semiconductor device having a surface electrode structure, and a saccharide coating formed over the surface electrode structure. The saccharide coating can be removed prior to use. The semiconductor device can further include a well and optionally a bead disposed in the well.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: April 14, 2020
    Assignee: Life Technologies Corporation
    Inventors: Phil Waggoner, James A. Ball, Wolfgang Hinz, Michael L. Minto, Scott Parker, David M. Cox, Alexander Mastroianni, Jeremy Gray, Marc Glazer, Kimberly Gorrell
  • Publication number: 20200109445
    Abstract: Methods and apparatuses relating to large scale FET arrays for analyte detection and measurement are provided. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes.
    Type: Application
    Filed: August 20, 2019
    Publication date: April 9, 2020
    Inventors: Jonathan ROTHBERG, Wolfgang Hinz
  • Patent number: 10612017
    Abstract: The invention provides particle compositions having applications in nucleic acid analysis. Nucleic acid polymer particles of the invention allow polynucleotides to be attached throughout their volumes for higher loading capacities than those achievable solely with surface attachment. In one aspect, nucleic acid polymer particles of the invention comprise polyacrylamide particles with uniform size distributions having low coefficients of variations, which result in reduced particle-to-particle variation in analytical assays. Such particle compositions are used in various amplification reactions to make amplicon libraries from nucleic acid fragment libraries.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: April 7, 2020
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Wolfgang Hinz, John Leamon, David Light, Jonathan M. Rothberg