Patents by Inventor Wolfgang Hinz

Wolfgang Hinz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160272954
    Abstract: In some embodiments, the present teachings provide methods for nucleic acid amplification, comprising forming a reaction mixture, and subjecting the reaction mixture to conditions suitable for nucleic acid amplification. In some embodiments, methods for nucleic acid amplification include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, methods for nucleic acid amplification include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the methods for nucleic acid amplification employ an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel. In some embodiments, methods for nucleic acid amplification can be conducted in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components.
    Type: Application
    Filed: April 6, 2016
    Publication date: September 22, 2016
    Inventors: Chieh-Yuan LI, David RUFF, Shiaw-Min CHEN, Jennifer O'NEIL, Rachel KASINSKAS, Jonathan ROTHBERG, Bin LI, Kai Qin LAO, Wolfgang HINZ
  • Publication number: 20160258011
    Abstract: A sensor apparatus includes a substrate, a semiconductor device disposed over the substrate, the semiconductor device having a surface electrode structure, and a saccharide coating formed over the surface electrode structure. The saccharide coating can be removed prior to use. The semiconductor device can further include a well and optionally a bead disposed in the well.
    Type: Application
    Filed: March 4, 2016
    Publication date: September 8, 2016
    Inventors: Phil WAGGONER, James A. BALL, Wolfgang HINZ, Michael L. MINTO, Scott PARKER, David M. COX, Alexander MASTROIANNI, Jeremy GRAY, Marc GLAZER, Kimberly GORRELL
  • Patent number: 9410151
    Abstract: The present invention provides novel microfluidic devices and methods that are useful for performing high-throughput screening assays and combinatorial chemistry. The invention provides for aqueous based emulsions containing uniquely labeled cells, enzymes, nucleic acids, etc., wherein the emulsions further comprise primers, labels, probes, and other reactants. An oil based carrier-fluid envelopes the emulsion library on a microfluidic device, such that a continuous channel provides for flow of the immiscible fluids, to accomplish pooling, coalescing, mixing, sorting, detection, etc., of the emulsion library.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: August 9, 2016
    Assignee: Raindance Technologies, Inc.
    Inventors: Darren R. Link, Laurent Boitard, Jeffrey Branciforte, Yves Charles, Gilbert Feke, John Q. Lu, David Marran, Ahmadali Tabatabai, Michael Weiner, Wolfgang Hinz, Jonathan M. Rothberg
  • Patent number: 9404887
    Abstract: The described embodiments may provide a method of fabricating a chemical detection device. The method may comprise forming a microwell above a CMOS device. The microwell may comprise a bottom surface and sidewalls. The method may further comprise applying a first chemical to be selectively attached to the bottom surface of the microwell, forming a metal oxide layer on the sidewalls of the microwell, and applying a second chemical to be selectively attached to the sidewalls of the microwell. The second chemical may lack an affinity to the first chemical.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: August 2, 2016
    Assignee: Life Technologies Corporation
    Inventors: Wolfgang Hinz, John M. Mauro, Shifeng Li, James Bustillo
  • Patent number: 9404920
    Abstract: Methods and apparatuses relating to large scale FET arrays for analyte detection and measurement are provided. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: August 2, 2016
    Assignee: Life Technologies Corporation
    Inventors: Jonathan Rothberg, Wolfgang Hinz
  • Publication number: 20160202209
    Abstract: An apparatus includes a device substrate including an array of sensors. Each sensor of the array of sensors can include a electrode structure disposed at a surface of the device substrate. The apparatus further includes a wall structure overlying the surface of the device substrate and defining an array of wells at least partially corresponding with the array of sensors. The well structure including an electrode layer and an insulative layer.
    Type: Application
    Filed: February 10, 2016
    Publication date: July 14, 2016
    Inventors: Kristopher BARBEE, John F. Davidson, Wolfgang Hinz, Shifeng Li, James Bustillo
  • Publication number: 20160194629
    Abstract: The invention provides particle compositions having applications in nucleic acid analysis. Nucleic acid polymer particles of the invention allow polynucleotides to be attached throughout their volumes for higher loading capacities than those achievable solely with surface attachment. In one aspect, nucleic acid polymer particles of the invention comprise polyacrylamide particles with uniform size distributions having low coefficients of variations, which result in reduced particle-to-particle variation in analytical assays. Such particle compositions are used in various amplification reactions to make amplicon libraries from nucleic acid fragment libraries.
    Type: Application
    Filed: January 4, 2016
    Publication date: July 7, 2016
    Inventors: Wolfgang HINZ, John LEAMON, David LIGHT, Jonathan M. ROTHBERG
  • Publication number: 20160137762
    Abstract: A method of forming a particle includes, in a disperse phase within an aqueous suspension, polymerizing a plurality of mer units of a hydrophilic monomer having a hydrophobic protection group, thereby forming a polymeric particle including a plurality of the hydrophobic protection groups. The method further includes converting the polymeric particle to a hydrophilic particle.
    Type: Application
    Filed: January 25, 2016
    Publication date: May 19, 2016
    Inventors: Geir FONNUM, Grete Irene MODAHL, Nini Hofsloekken KJUS, Astrid Evenroed MOLTEBERG, Diem Thuy Thi TRAN, Jo AASERUD, M. Talha GOKMEN, Steven M. MENCHEN, Carl FULLER, Luisa ANDRUZZI, Wolfgang HINZ
  • Patent number: 9328344
    Abstract: The present invention provides novel microfluidic devices and methods that are useful for performing high-throughput screening assays and combinatorial chemistry. Such methods can include labeling a library of compounds by emulsifying aqueous solutions of the compounds and aqueous solutions of unique liquid labels on a microfluidic device, which includes a plurality of electrically addressable, channel bearing fluidic modules integrally arranged on a microfabricated substrate such that a continuous channel is provided for flow of immiscible fluids, whereby each compound is labeled with a unique liquid label, pooling the labeled emulsions, coalescing the labeled emulsions with emulsions containing a specific cell or enzyme, thereby forming a nanoreactor, screening the nanoreactors for a desirable reaction between the contents of the nanoreactor, and decoding the liquid label, thereby identifying a single compound from a library of compounds.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: May 3, 2016
    Assignee: Raindance Technologies, Inc.
    Inventors: Darren Link, Laurent Boitard, Jeffrey Branciforte, Yves Charles, Gilbert Feke, John Q. Lu, David Marran, Ahmadali Tabatabai, Michael Weiner, Wolfgang Hinz, Jonathan M. Rothberg
  • Publication number: 20160097091
    Abstract: In some embodiments, the disclosure relates generally to methods, as well as compositions, systems, kits and apparatuses, for performing nucleotide incorporation, comprising: (a) providing a surface including one or more reaction sites containing a polymerase and a nucleic acid template that has, or is hybridized to, an extendible end; (b) performing a first nucleotide flow by contacting one or more of the reaction sites with a first solution including one or more types of terminator nucleotide; (c) incorporating at least one type of terminator nucleotide at the extendible end of the nucleic acid template contained within at least one of the reaction sites using the polymerase; and (d) detecting a non-optical signal indicating the nucleotide incorporation using a sensor that is attached or operatively linked to the at least one reaction site.
    Type: Application
    Filed: September 16, 2015
    Publication date: April 7, 2016
    Inventors: Wolfgang HINZ, Peter VANDER HORN, Earl HUBBELL, Christian WOEHLER
  • Publication number: 20160097095
    Abstract: A method of forming a particle includes, in a disperse phase within an aqueous suspension, polymerizing a plurality of mer units of a hydrophilic monomer having a hydrophobic protection group, thereby forming a polymeric particle including a plurality of the hydrophobic protection groups. The method further includes converting the polymeric particle to a hydrophilic particle.
    Type: Application
    Filed: December 15, 2015
    Publication date: April 7, 2016
    Inventors: Geir FONNUM, Grete Irene MODAHL, Nini Hofslokken KJUS, Astrid Evenroed MOLTEBERG, Diem TRAN, Jo AASERUD, Talha M. GOKMEN, Steven M. MENCHEN, Carl FULLER, Luisa ANDRUZZI, Wolfgang HINZ
  • Publication number: 20160097094
    Abstract: A method of forming a particle includes, in a disperse phase within an aqueous suspension, polymerizing a plurality of mer units of a hydrophilic monomer having a hydrophobic protection group, thereby forming a polymeric particle including a plurality of the hydrophobic protection groups. The method further includes converting the polymeric particle to a hydrophilic particle.
    Type: Application
    Filed: December 15, 2015
    Publication date: April 7, 2016
    Inventors: Geir FONNUM, Grete Irene MODAHL, Nini Hofslokken KJUS, Astrid Evenroed MOLTEBERG, Diem TRAN, Jo AASERUD, Talha M. GOKMEN, Steven M. MENCHEN, Carl FULLER, Luisa ANDRUZZI, Wolfgang HINZ
  • Patent number: 9267914
    Abstract: An apparatus includes a device substrate including an array of sensors. Each sensor of the array of sensors can include a electrode structure disposed at a surface of the device substrate. The apparatus further includes a wall structure overlying the surface of the device substrate and defining an array of wells at least partially corresponding with the array of sensors. The well structure including an electrode layer and an insulative layer.
    Type: Grant
    Filed: April 3, 2014
    Date of Patent: February 23, 2016
    Assignee: Life Technologies Corporation
    Inventors: Kristopher Barbee, John F. Davidson, Wolfgang Hinz, Shifeng Li, James Bustillo
  • Patent number: 9269708
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: February 23, 2016
    Assignee: Life Technologies Corporation
    Inventors: Jonathan M. Rothberg, Wolfgang Hinz, Kim L. Johnson, James Bustillo
  • Publication number: 20160032371
    Abstract: A method of forming a polymer matrix array includes applying an aqueous solution into wells of a well array. The aqueous solution includes polymer precursors. The method further includes applying an immiscible fluid over the well array to isolate the aqueous solution within the wells of the well array and polymerizing the polymer precursors isolated in the wells of the well array to form the polymer matrix array. An apparatus includes a sensor array, a well array corresponding to the sensor array, and an array of polymer matrices disposed in the well array.
    Type: Application
    Filed: March 13, 2014
    Publication date: February 4, 2016
    Inventors: David LIGHT, Wolfgang HINZ, Ronald L. CICERO, Christina E. INMAN, Paul M. KENNEY, Alexander MASTROIANNI, Roman ROZHKOV, Yufang WANG, Jeremy GRAY, Marc GLAZER, Dmitriy GREMYACHINSKIY
  • Patent number: 9249461
    Abstract: The invention provides particle compositions having applications in nucleic acid analysis. Nucleic acid polymer particles of the invention allow polynucleotides to be attached throughout their volumes for higher loading capacities than those achievable solely with surface attachment. In one aspect, nucleic acid polymer particles of the invention comprise polyacrylamide particles with uniform size distributions having low coefficients of variations, which result in reduced particle-to-particle variation in analytical assays. Such particle compositions are used in various amplification reactions to make amplicon libraries from nucleic acid fragment libraries.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: February 2, 2016
    Assignee: Life Technologies Corporation
    Inventors: Wolfgang Hinz, John Leamon, David Light, Jonathan M. Rothberg
  • Patent number: 9243085
    Abstract: A method of forming a particle includes, in a disperse phase within an aqueous suspension, polymerizing a plurality of mer units of a hydrophilic monomer having a hydrophobic protection group, thereby forming a polymeric particle including a plurality of the hydrophobic protection groups. The method further includes converting the polymeric particle to a hydrophilic particle.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: January 26, 2016
    Assignees: Life Technologies Corporation, Life Technologies AS
    Inventors: Geir Fonnum, Grete Modahl, Nini Kjus, Astrid Evenroed Molteberg, Diem Tran, Jo Aaserud, M. Talha Gokmen, Steven Menchen, Carl Fuller, Luisa Andruzzi, Wolfgang Hinz
  • Publication number: 20160011146
    Abstract: A system includes a sensor including a sensor pad and includes a well wall structure defining a well operatively connected to the sensor pad. The sensor pad is associated with a lower surface of the well. The well wall structure defines an upper surface and a wall surface extending between the upper surface and the lower surface. The upper surface is defined by an upper buffer material having an intrinsic buffer capacity of at least 2×1017 groups/m2. The wall surface is defined by a wall material having an intrinsic buffer capacity of not greater than 1.7×1017 groups/m2.
    Type: Application
    Filed: September 23, 2015
    Publication date: January 14, 2016
    Inventors: Shifeng LI, James Bustillo, Wolfgang Hinz
  • Patent number: 9194840
    Abstract: A system includes a sensor including a sensor pad and includes a well wall structure defining a well operatively connected to the sensor pad. The sensor pad is associated with a lower surface of the well. The well wall structure defines an upper surface and a wall surface extending between the upper surface and the lower surface. The upper surface is defined by an upper buffer material having an intrinsic buffer capacity of at least 2×1017 groups/m2. The wall surface is defined by a wall material having an intrinsic buffer capacity of not greater than 1.7×1017 groups/m2.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: November 24, 2015
    Assignee: Life Technologies Corporation
    Inventors: Shifeng Li, James Bustillo, Wolfgang Hinz
  • Patent number: 9194000
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in the concentration of inorganic pyrophosphate (PPi), hydrogen ions, and nucleotide triphosphates.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: November 24, 2015
    Assignee: Life Technologies Corporation
    Inventors: Jonathan M. Rothberg, Wolfgang Hinz, Kim L. Johnson, James Bustillo, John Leamon, Jonathan Schultz