Patents by Inventor Xiang Wu

Xiang Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11802983
    Abstract: Systems and methods relate to borehole seismic studies. Traditionally, borehole seismic studies are conducted using geophones. Seismic acquisition can be performed using fiber optic Distributed Acoustic Sensing (DAS). Because DAS measures dynamic relative displacement over a gauge length, which is different from particle velocity, DAS data can be converted into an equivalent geophone output response. Operations include converting DAS data into distributed velocity, and then, converting the velocity output into an equivalent geophone response. Various aspects include separating the data into interleaving subsets, integrating each subset along the spatial coordinates, selecting a window width over which the median of each subset will be calculated and subtracted from the data, performing a spatial average or low-pass filtering over contiguous values, performing a time-domain low-pass filtering, and performing the velocity-to-geophone conversion operation.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: October 31, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Michel Joseph LeBlanc, Mark Elliott Willis, Andreas Ellmauthaler, Xiang Wu
  • Publication number: 20230343987
    Abstract: Provided are a winding device and a winding apparatus. An inner shaft of the winding device is configured to clamp an electrode assembly; and an outer shaft of the winding device is configured to wind the electrode assembly. The winding device includes: a first slider and a first pusher, where the first slider may reciprocate in a first sliding slot in the first pusher in a first direction, and an extension direction of the first sliding slot is inclined from the first direction such that the first pusher drives a first inner shaft to reciprocate in a second direction, the second direction being perpendicular to the first direction; and a second slider and a second pusher, where the second slider may reciprocate in a second sliding slot in the second pusher in a third direction, and an extension direction of the second sliding slot is inclined from the third direction.
    Type: Application
    Filed: June 28, 2023
    Publication date: October 26, 2023
    Inventors: Wei Zhang, Xiaowei Zhang, Xiang Wu, Yuqian Wen
  • Patent number: 11798358
    Abstract: Systems and methods are provided. A system includes a communication interface, a processor circuit and a memory coupled to the processor circuit. The memory includes machine readable instructions that, when executed by the processor circuit, cause the processor circuit to receive, from a casino operator, a request for credit data that corresponds to a player that requested credit from the casino operator, to use in a wagering event. The processor circuit is further caused to, in response to receiving the request for credit data, receive, from a decentralized distributed casino credit management architecture, a data block that includes a credit record that corresponds the player. The processor circuit is further caused to determine, based on the credit record, a response to the player that requested the credit. The response includes extending the requested credit to the player or denying the requested credit.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: October 24, 2023
    Assignee: IGT
    Inventors: Haiyun Zhang, Yizhao Zhu, Jun Robert Li, Xiang Wu
  • Publication number: 20230333273
    Abstract: A method and system for removing intrinsic transducer noises. The method may comprise disposing a measurement assembly into a wellbore, performing a measurement operation at a depth in the wellbore with the measurement assembly to record two or more raw reflected waveforms, identifying one or more intrinsic transducer noises in the two or more raw reflected waveforms, dividing the two or more raw reflected waveforms into one or more subsections, and identifying one or more incoherent measurements in the one or more subsections. The method may further comprise deriving a noise model for each of the one or more incoherent measurements, performing an inversion for each noise model, and applying an adaptive subtraction to remove the one or more intrinsic transducer noises from the two or more raw reflected waveforms.
    Type: Application
    Filed: December 20, 2022
    Publication date: October 19, 2023
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Ho Yin Ma, Xiang Wu, Batakrishna Mandal
  • Publication number: 20230314379
    Abstract: Systems and methods for beam profile imaging by emitting a ray into one or more media; receiving a first signal corresponding to the ray at a first point; encoding a first matrix based at least in part on one or more of a location of the first point, a direction of the ray at the first point, and a first perturbation effect; receiving a second signal corresponding to the ray at a second point; encoding a second matrix based at least in part on one or more of a location of the second point, a direction of the ray at the second point, and a second perturbation effect; and calculating the value of the acoustic property of one or more media based at least in part on a comparison between the first matrix and the second matrix.
    Type: Application
    Filed: February 11, 2022
    Publication date: October 5, 2023
    Inventors: James Martin Price, Christopher Michael Jones, Xiang Wu
  • Publication number: 20230313676
    Abstract: A method for acoustic noise source detection. The method may comprise disposing an acoustic logging tool into a wellbore, performing an acoustic logging operations in the wellbore with the acoustic logging tool, forming a data set form the acoustic logging operation, and performing a cross-correlation function between pairs of hydrophones using the data set. The method may further comprise construction a cost function using at least in part the cross-correlation function to find a noise source distribution and identifying a location of the acoustic noise source by inverting the noise source distribution.
    Type: Application
    Filed: August 17, 2022
    Publication date: October 5, 2023
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Yadong Wang, Xiang Wu
  • Publication number: 20230314647
    Abstract: A system for leak detection. The system may comprise an acoustic logging tool that includes a hydrophone array with a plurality of hydrophones. The system may further include an information handling system communicatively connected to the acoustic logging tool and wherein the information handling system chooses three or more hydrophones from the plurality of hydrophones to operate during measurement operations.
    Type: Application
    Filed: August 10, 2022
    Publication date: October 5, 2023
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Xiang Wu, Yao Ge, Yadong Wang
  • Publication number: 20230314648
    Abstract: A method for identifying guided waves in a measurement set. The method may comprise disposing an acoustic logging tool into a wellbore, performing a measurement operation with the acoustic logging too in the wellbore to form a data set which comprises one or more guided waves, measuring a speed of the one or more guided waves, and identifying a fluid phase interface using the speed of the one or more guided waves. The method may further comprise estimating an acoustic velocity of a wellbore fluid using a database and interpreting the fluid phase based at least in part on the acoustic velocity of the wellbore fluid.
    Type: Application
    Filed: August 16, 2022
    Publication date: October 5, 2023
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Yadong Wang, Jichun Sun, Ruijia Wang, Xiang Wu
  • Patent number: 11775589
    Abstract: Generally, the present disclosure is directed to systems and methods of quantizing a database with respect to a novel loss or quantization error function which applies a weight to an error measurement of quantized elements respectively corresponding to the datapoints in the database. The weight is determined based on the magnitude of an inner product between the respective datapoints and a query compared therewith. In contrast to previous work, embodiments of the proposed loss function are responsive to the expected magnitude of an inner product between the respective datapoints and a query compared therewith and can prioritize error reduction for higher-ranked pairings of the query and the datapoints. Thus, the systems and methods of the present disclosure provide solutions to some of the problems with traditional quantization approaches, which regard all error as equally impactful.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: October 3, 2023
    Assignee: GOOGLE LLC
    Inventors: Ruiqi Guo, David Simcha, Quan Geng, Felix Chern, Sanjiv Kumar, Xiang Wu
  • Patent number: 11733419
    Abstract: Ringdown noise can be estimated and removed from a waveform captured by a downhole tool. Ringdown may be estimated by calculating a median of waveforms from a number of tool firings. The estimated ringdown may then be subtracted from a waveform currently being processed. The resulting waveform contains a more accurate representation of a true echo signal reflected from the borehole wall or formation. In some embodiments, the acoustic transducer's deterministic waveform may be learned by statistical analysis of other waveforms near in time to the presently measured waveform. In other embodiments, the deterministic waveform may be learned via previously acquired waveforms now stored in memory, or through predictive waveforms developed in laboratory testing conditions similar to those experienced downhole.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: August 22, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Yao Ge, Xiang Wu, Jing Jin
  • Publication number: 20230257011
    Abstract: The present disclosure relates to a system and method for automatic adjustment of a planned train operation chart. The system comprises a train operation data analysis module, a passenger flow data matching module, and an operation chart adjustment module that are connected in sequence. The train operation data analysis module is connected to the operation chart adjustment module; the train operation data analysis module assesses the deviation between an actual operation chart and a planned operation chart on the basis of ATS historical operation data to obtain an operation chart assessment result; the passenger flow data matching module calculates the actual passenger flow distribution on the basis of on-board weighing passenger flow data and AFC passenger flow data, and matches the actual passenger flow distribution with the actual operation chart to obtain a passenger flow matching result; and the operation chart adjustment module performs optimizing adjustment.
    Type: Application
    Filed: September 28, 2021
    Publication date: August 17, 2023
    Applicant: CASCO SIGNAL LTD.
    Inventors: Fengbo LIU, Jiang QIAN, Tingliang ZHOU, Xiang WU, Jing XU, Junkui QIU, Gongjian ZHOU, Xiao LIU
  • Publication number: 20230213677
    Abstract: In some embodiments, a method includes conveying a downhole tool in a tubing, positioned in a casing which forms an annulus between the casing and a wellbore formed in a subsurface formation, the downhole tool having a rotatable transmitter and a receiver array. The method includes performing the following until an acoustic transmission has been emitted for each of a number of defined azimuthal positions: rotating the rotatable transmitter to one of the number of defined azimuthal positions, emitting the acoustic transmission, and detecting, by the receiver array and without rotation of the downhole tool beyond a rotation threshold, an acoustic response of a number of acoustic responses that is derived from the acoustic transmission. The method further includes computationally rotating, by a processor and after detecting, data of each of the number of acoustic responses in a pre-determined direction to generate a computationally rotated multipole response.
    Type: Application
    Filed: January 3, 2022
    Publication date: July 6, 2023
    Inventors: Yao Ge, Xiang Wu, Ruijia Wang, Ho Yin Ma
  • Publication number: 20230213675
    Abstract: A model is used to generate corrections to mitigate ideal condition artifacts in acoustic property values of an annular material in a cased wellbore. A mathematical model that generates acoustic property values at ideal conditions introduces artifacts into the acoustic property values. Acoustic measurements of an annular material are used to generate features that represent wellbore conditions and are not accounted for in the mathematical model that generates acoustic property values. A model will generate corrections for acoustic property values of an annular material with the features to yield a more accurate acoustic property profile for the annular material of a cased hole.
    Type: Application
    Filed: January 3, 2022
    Publication date: July 6, 2023
    Inventors: Amit Padhi, Christopher Michael Jones, Xiang Wu, James Martin Price
  • Publication number: 20230194743
    Abstract: A method comprises conveying a downhole tool in a production tubing within a casing that is around a wall of a wellbore formed in a subsurface formation, wherein cement is placed in an annulus defined between the casing and the wall of the wellbore. The downhole tool includes at least one unipole receiver and a transmitter that comprises at least one of a unipole transmitter and a monopole transmitter. The transmitter and receiver are mounted on a rotatable portion of the downhole tool. The method includes performing the following operations at at least two azimuthal positions, emitting an acoustic transmission outward toward the cement and detecting an acoustic response that is in response to the acoustic transmission propagating through the production tubing and the casing and into the cement. The acoustic response includes casing extensional waves, casing non-extensional waves, and tubing waves. The method includes evaluating the cement based on the casing extensional waves.
    Type: Application
    Filed: December 20, 2021
    Publication date: June 22, 2023
    Inventors: Ruijia Wang, Yao Ge, Brenno Caetano Troca Cabella, Chung Chang, Jing Jin, Ho Yin Ma, Xiang Wu
  • Patent number: 11675099
    Abstract: Embodiments disclosed herein include components, devices, systems, and operations and functions for generating a seismic profile. An optical signal is generated in an optical signal medium disposed in proximity to a formation. A seismic source induces seismic signals within the formation. A backscatter response corresponding to the seismic signals from the optical signal medium is detected and quadrature modulated to generate a quadrature trace. A seismic response is generated by determining phase differences in the backscatter response based on the quadrature modulated backscatter response. Portions of the seismic response above or below a response threshold are removed to generate a threshold seismic response. The threshold seismic response is correlated with at least one of the seismic signals to generate a correlated seismic response.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: June 13, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Xiang Wu, Mark Elliott Willis, Andreas Ellmauthaler
  • Patent number: 11674383
    Abstract: A hydrophone array tool as described herein is configured to locate leakages throughout a borehole with improved accuracy using acoustic beamforming techniques with acoustic velocity estimation. An acoustic beamforming processor generates an initial beamforming map and corresponding initial estimated leakage location using acoustic measurements throughout the borehole. The acoustic beamforming processor generates additional beamforming maps at the initial estimated leakage location, each additional beamforming map corresponding to an acoustic velocity within a range of anticipated acoustic velocities. An acoustic velocity estimator determines an acoustic velocity corresponding to a beamforming map with spatial statistics that indicate a most prominent leakage location. The acoustic beamforming processor updates the leakage location according to this beamforming map for improved accuracy.
    Type: Grant
    Filed: November 3, 2020
    Date of Patent: June 13, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Yadong Wang, Yao Ge, Xiang Wu
  • Publication number: 20230175386
    Abstract: A method comprising: conveying a downhole tool in a tubing that is positioned in a casing that is positioned to form an annulus between the casing and a wall of a wellbore formed in a subsurface formation, wherein a cement with unknown bonding condition exists in the annulus, wherein the downhole tool includes at least one transmitter and a receiver array physically positioned in different azimuthal directions; emitting, from the at least one transmitter, a first and second acoustic transmissions in a first and second azimuthal directions; detecting, by the receiver array, a first acoustic response and a second acoustic response that is derived from the first and second acoustic transmissions, wherein the second azimuthal direction is orthogonal to the first azimuthal direction; determining a dipole wellbore resonance based on the first and acoustic responses; and evaluating a property of the cement based on the dipole wellbore resonance.
    Type: Application
    Filed: December 8, 2021
    Publication date: June 8, 2023
    Inventors: Yao Ge, Ruijia Wang, Ho Yin Ma, Xiang Wu
  • Publication number: 20230175391
    Abstract: The disclosure presents processes to determine the direction and magnitude of tubing eccentricity along the length of a tube inserted within a borehole. The tubing can be a wireline, a drill string, a drill pipe, or tubing capable of allowing fluid or other material to flow through it. As borehole operations proceed, the tubing can move toward the side of the borehole. This eccentricity can cause excess wear and tear on the tubing, on the casing of the borehole, or on the inner surface of the subterranean formation. The eccentricity can be measured using acoustic signals that are collected downhole covering the azimuthal angles 0° to 360° at a location in the borehole. The collected signals can be filtered, transformed, and analyzed to estimate the tubing eccentricity. Other processes and systems can use the results to obtain cement bond evaluations through tubing and to determine preventative or restorative actions.
    Type: Application
    Filed: December 6, 2021
    Publication date: June 8, 2023
    Inventors: Brenno Caetano Troca Cabella, Xiang Wu, Marco Aurelio Luzio, Pablo Vieira Rego, Chung Chang, Federico Combis Lucas, Yao Ge, Ruijia Wang, Ho Yin Ma
  • Patent number: 11662496
    Abstract: Methods, systems, and program products are disclosed for implementing acoustic logging and determining wellbore material characteristics. In some embodiments, a method may include determining a polar differential signal for each of one or more pairs of azimuthally offset acoustic measurements within a wellbore. A reference azimuth is identified based, at least in part, on comparing the polar differential signals to a modeled bonding differential signal within a target response window. The method further includes determining differences between an acoustic measurement at the reference azimuth and acoustic measurements at one or more other azimuths and determining a wellbore material condition based, at least in part, on the determined differences.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: May 30, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Brenno Caetano Troca Cabella, Ruijia Wang, Chung Chang, Qingtao Sun, Yao Ge, Xiang Wu, Pablo Vieira Rego, Marco Aurelio Luzio, João Vicente Gonçalves Rocha
  • Patent number: D994642
    Type: Grant
    Filed: February 6, 2023
    Date of Patent: August 8, 2023
    Inventor: Qiu Xiang Wu