Patents by Inventor Xiaoying Guo

Xiaoying Guo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220115334
    Abstract: Embodiments disclosed herein include electronic packages and methods of forming such electronic packages. In an embodiment, the electronic package comprises a mold layer having a first surface and a second surface opposite the first surface, and a plurality of first dies embedded in the mold layer. In an embodiment, each of the plurality of first dies has a surface that is substantially coplanar with the first surface of the mold layer. In an embodiment, the electronic package further comprises a second die embedded in the mold layer. In an embodiment, the second die is positioned between the plurality of first dies and the second surface of the mold layer.
    Type: Application
    Filed: December 20, 2021
    Publication date: April 14, 2022
    Inventors: Srinivas PIETAMBARAM, Gang DUAN, Deepak KULKARNI, Rahul MANEPALLI, Xiaoying GUO
  • Publication number: 20210375746
    Abstract: Processes and structures resulting therefrom for the improvement of high speed signaling integrity in electronic substrates of integrated circuit packages, which is achieved with the formation of airgap structures within dielectric material(s) between adjacent conductive routes that transmit/receive electrical signals, wherein the airgap structures decrease the capacitance and/or decrease the insertion losses in the dielectric material used to form the electronic substrates.
    Type: Application
    Filed: May 27, 2020
    Publication date: December 2, 2021
    Applicant: INTEL CORPORATION
    Inventors: Hongxia Feng, Jeremy Ecton, Aleksandar Aleksov, Haobo Chen, Xiaoying Guo, Brandon C. Marin, Zhiguo Qian, Daryl Purcell, Leonel Arana, Matthew Tingey
  • Publication number: 20210366860
    Abstract: Embodiments disclosed herein include electronic packages. In an embodiment, an electronic package comprises a package substrate and a bridge substrate embedded in the package substrate. In an embodiment, first pads are over the package substrate, where the first pads have a first pitch, and second pads are over the bridge substrate, where the second pads have a second pitch that is smaller than the first pitch. In an embodiment, a barrier layer is over individual ones of the second pads. In an embodiment, reflown solder is over individual ones of the first pads and over individual ones of the second pads. In an embodiment, a first standoff height of the reflown solder over the first pads is equal to a second standoff height of the reflown solder over the second pads.
    Type: Application
    Filed: May 21, 2020
    Publication date: November 25, 2021
    Inventors: Jung Kyu HAN, Hongxia FENG, Xiaoying GUO, Rahul N. MANEPALLI
  • Publication number: 20210343673
    Abstract: A patch structure of an integrated circuit package comprises a core having a first side facing downwards and a second side facing upwards. A first solder resist (SR) layer is formed on the first side of the core, wherein the first SR layer comprises a first layer interconnect (FLI) and has a first set of one or more microbumps thereon to bond to one or more logic die. A second solder resist (SR) layer is formed on the second side of the core, wherein the second SR layer has a second set of one or more microbumps thereon to bond with a substrate. One or more bridge dies includes a respective sets of bumps, wherein the one or more bridge dies is disposed flipped over within the core such that the respective sets of bumps face downward and connect to the first set of one or more microbumps in the FLI.
    Type: Application
    Filed: July 2, 2021
    Publication date: November 4, 2021
    Inventors: Changhua LIU, Xiaoying GUO, Aleksandar ALEKSOV, Steve S. CHO, Leonel ARANA, Robert MAY, Gang DUAN
  • Publication number: 20210250429
    Abstract: A terminal device may include: a housing; a first radiator disposed in the housing and configured to receive and transmit wireless signals; and a conducting layer disposed on an inner surface of a back shell of the housing and coupled with the first radiator to form a second radiator which is configured to receive and transmit the wireless signals.
    Type: Application
    Filed: July 14, 2020
    Publication date: August 12, 2021
    Inventors: Xiaoying GUO, Linchuan WANG
  • Patent number: 11088103
    Abstract: A patch structure of an integrated circuit package comprises a core having a first side facing downwards and a second side facing upwards. A first solder resist (SR) layer is formed on the first side of the core, wherein the first SR layer comprises a first layer interconnect (FLI) and has a first set of one or more microbumps thereon to bond to one or more logic die. A second solder resist (SR) layer is formed on the second side of the core, wherein the second SR layer has a second set of one or more microbumps thereon to bond with a substrate. One or more bridge dies includes a respective sets of bumps, wherein the one or more bridge dies is disposed flipped over within the core such that the respective sets of bumps face downward and connect to the first set of one or more microbumps in the FLI.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: August 10, 2021
    Assignee: Intel Corporation
    Inventors: Changhua Liu, Xiaoying Guo, Aleksandar Aleksov, Steve S. Cho, Leonel Arana, Robert May, Gang Duan
  • Publication number: 20210117448
    Abstract: In some examples, iterative sampling based dataset clustering may include sampling a dataset that includes a plurality of items to identify a specified number of sampled items. The sampled items may be clustered to generate a plurality of clusters. Un-sampled items may be assigned from the plurality of items to the clusters. Remaining un-sampled items that are not assigned to the clusters may be identified. A ratio associated with the remaining un-sampled items and the plurality of items may be compared to a specified threshold. Based on a determination that the ratio is greater than the specified threshold, an indication of completion of clustering of the plurality of items may be generated.
    Type: Application
    Filed: October 21, 2019
    Publication date: April 22, 2021
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Shean WANG, Jiayuan HUANG, Weizhu CHEN, Changhong YUAN, Ankit SARAF, Xiaoying GUO, Eslam K. ABDELREHEEM, Yunjing MA, Yuantao WANG, Justin Carl WONG, Nan ZHAO, Chao LI, Tsuyoshi WATANABE, Jaclyn Ruth Elizabeth PHILLIPS
  • Publication number: 20200365534
    Abstract: Conductive structures in a microelectronic package and having a surface roughness of 50 nm or less are described. This surface roughness is from 2 to 4 times less than can be found in packages with conductive structures (e.g., traces) formed using alternative techniques. This reduced surface roughness has a number of benefits, which in some cases includes a reduction of insertion loss and improves a signal to noise ratio for high frequency computing applications. The reduced surface roughness can be accomplished by protecting the conductive structure r during etch processes and applying an adhesion promoting layer to the conductive structure.
    Type: Application
    Filed: May 16, 2019
    Publication date: November 19, 2020
    Applicant: Intel Corporation
    Inventors: KRISTOF DARMAWIKARTA, SRINIVAS V. PIETAMBARAM, HONGXIA FENG, XIAOYING GUO, BENJAMIN T. DUONG
  • Publication number: 20200335443
    Abstract: Embodiments include semiconductor packages and method of forming the semiconductor packages. A semiconductor package includes a plurality of conductive layers over a package substrate. The conductive layers include a first conductive layer and first-level interconnects (FLIs) in the package substrate. The semiconductor package also includes a solder resist that surrounds the FLIs, where the solder resist has a top surface that is substantially coplanar to top surfaces of the FLIs, a bridge coupled directly to the first conductive layer with solder balls, where the first conductive layer is coupled to the FLIs, and a dielectric over the conductive layers, the bridge, and the solder resist of the package substrate. The bridge may be an embedded multi-die interconnect bridge (EMIB). The first conductive layer may include first conductive pads and second conductive pads. The FLIs may include first conductive vias, second conductive vias, diffusion layers, and third conductive pads.
    Type: Application
    Filed: April 17, 2019
    Publication date: October 22, 2020
    Inventors: Xiao Di SUN ZHOU, Debendra MALLIK, Xiaoying GUO
  • Publication number: 20200286847
    Abstract: A patch structure of an integrated circuit package comprises a core having a first side facing downwards and a second side facing upwards. Forming a first solder resist (SR) layer on the first side of the core, wherein the first SR layer comprises a first layer interconnect (FLI) and has a first set of one or more microbumps thereon to bond to one or more logic die. Forming a second solder resist (SR) layer on the second side of the core, wherein the second SR layer has a second set of one or more microbumps thereon to bond with a substrate. One or more bridge dies includes a respective sets of bumps, wherein the one or more bridge dies is disposed flipped over within the core such that the respective sets of bumps face downward and connect to the first set of one or more microbumps in the FLI.
    Type: Application
    Filed: January 12, 2018
    Publication date: September 10, 2020
    Inventors: Changhua LIU, Xiaoying GUO, Aleksandar ALEKSOV, Steve S. CHO, Leonel ARANA, Robert MAY, Gang DUAN
  • Publication number: 20200258847
    Abstract: Embodiments disclosed herein include electronic packages and methods of forming such electronic packages. In an embodiment, the electronic package comprises a mold layer having a first surface and a second surface opposite the first surface, and a plurality of first dies embedded in the mold layer. In an embodiment, each of the plurality of first dies has a surface that is substantially coplanar with the first surface of the mold layer. In an embodiment, the electronic package further comprises a second die embedded in the mold layer. In an embodiment, the second die is positioned between the plurality of first dies and the second surface of the mold layer.
    Type: Application
    Filed: February 12, 2019
    Publication date: August 13, 2020
    Inventors: Srinivas PIETAMBARAM, Gang DUAN, Deepak KULKARNI, Rahul MANEPALLI, Xiaoying GUO
  • Publication number: 20200205279
    Abstract: Microelectronic assemblies, and related devices and methods, are disclosed herein. For example, in some embodiments, a microelectronic assembly may include a substrate layer having a surface; a first conductive trace having a first thickness on the surface of the substrate layer; and a second conductive trace having a second thickness on the surface of the substrate layer, wherein the second thickness is different from the first thickness. In some embodiments, the first conductive trace and the second conductive trace have rectangular cross-sections.
    Type: Application
    Filed: December 21, 2018
    Publication date: June 25, 2020
    Applicant: Intel Corporation
    Inventors: Jeremy Ecton, Aleksandar Aleksov, Suddhasattwa Nad, Kristof Kuwawi Darmawikarta, Vahidreza Parichehreh, Veronica Aleman Strong, Xiaoying Guo
  • Publication number: 20200105685
    Abstract: Embodiments include one or more air core inductors (ACIs) and a method of forming the ACIs. The ACI includes a first inductor loop on a substrate. The first inductor loop has a first line and a second line. The first line has a first thickness that is greater than a second thickness of the second line. The ACI also includes a dielectric over the substrate and the first and second lines. The first line has a top surface above a top surface of the second line. The ACI further includes a second inductor loop on the dielectric and the first inductor loop. The second inductor loop has is coupled to the top surface of the first line of the first inductor loop. The first inductor loop may also have a third thickness, where the third thickness is the distance between the top surfaces of the first and second line.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Inventors: Jeremy ECTON, Suddhasattwa NAD, Kristof DARMAWIKARTA, Yonggang LI, Xiaoying GUO
  • Patent number: 8479177
    Abstract: A programming environment may have an abstract interface definition that may contain a redirection definition that may cause a call to be bound to a redirected method or function. The redirected method or function may be a conditional redirection, and some embodiments may perform various checks including signature checks, static and runtime access checks, and other verifications for the redirected method. The redirection may enable a programmer to modify a portion of an interface without having to re-implement all of the functions of the interface.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: July 2, 2013
    Assignee: Microsoft Corporation
    Inventors: Raja Kirshnaswamy, Yi Zhang, Scott D. Mosier, Ladislav Prosek, Xiaoying Guo
  • Publication number: 20130011697
    Abstract: A microbial fuel cell comprising an anode, a cathode, microbes in contact with the anode, a conduit for electrons connecting the anode to the cathode through an external circuit wherein the anode, cathode or both comprise a mixture of one or more conductive materials and one or more ion exchange materials.
    Type: Application
    Filed: March 18, 2011
    Publication date: January 10, 2013
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Sten A. Wallin, Scott T. Matteucci, Xiaoying Guo
  • Publication number: 20100299659
    Abstract: A programming environment may have an abstract interface definition that may contain a redirection definition that may cause a call to be bound to a redirected method or function. The redirected method or function may be a conditional redirection, and some embodiments may perform various checks including signature checks, static and runtime access checks, and other verifications for the redirected method. The redirection may enable a programmer to modify a portion of an interface without having to re-implement all of the functions of the interface.
    Type: Application
    Filed: May 20, 2009
    Publication date: November 25, 2010
    Applicant: Microsoft Corporation
    Inventors: Raja Kirshnaswamy, Yi Zhang, Scott D. Mosier, Ladislav Prosek, Xiaoying Guo