Patents by Inventor Xin Lin

Xin Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9941350
    Abstract: A device includes a semiconductor substrate, a doped isolation barrier disposed in the semiconductor substrate and having a first conductivity type, a body region disposed in the semiconductor substrate within the doped isolation barrier, having the first conductivity type, and in which a channel is formed during operation, and a plurality of reduced surface field (RESURF) layers disposed in the semiconductor substrate. The plurality of RESURF layers are arranged in a stack between the body region and the doped isolation barrier. The plurality of RESURF layers include an upper layer having a second conductivity type, a lower layer having the second conductivity type, and an isolation coupling layer disposed between the upper and lower layers, in contact with the doped isolation barrier, and having the first conductivity type.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: April 10, 2018
    Assignee: NXP USA, Inc.
    Inventors: Xin Lin, Hongning Yang, Ronghua Zhu, Jiang-Kai Zuo
  • Publication number: 20180090045
    Abstract: A method for adjusting display parameters in a display device detects a change (second intensity value) in ambient light levels from a first intensity value of ambient light and corresponding first set of display parameters applied to the display device. Second set of display parameters are calculated according to the first intensity value and the second intensity value as well as the first set of display parameters. The display parameters of the display device are adjusted from the first set of display parameters to the second set of display parameters to take account of the change represented by the second intensity value.
    Type: Application
    Filed: November 10, 2016
    Publication date: March 29, 2018
    Inventors: WU-KUI LI, XIN-LIN XIAO, YU-CHAN NIEH
  • Patent number: 9905687
    Abstract: Laterally diffused metal-oxide-semiconductor (LDMOS) device is disclosed. The device is surrounded by an isolation ring and a buried layer of a first doping type, that is of the same type as its source and drain regions of the same doping type. A control gate of the device includes step gate dielectric.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: February 27, 2018
    Assignee: NXP USA, Inc.
    Inventors: Ronghua Zhu, Xin Lin, Jiang-Kai Zuo
  • Patent number: 9899500
    Abstract: A method of fabricating a Schottky diode having an integrated junction field-effect transistor (JFET) device includes forming a conduction path region in a semiconductor substrate along a conduction path of the Schottky diode. The conduction path region has a first conductivity type. A lateral boundary of an active area of the Schottky diode is defined by forming a well of a device isolating structure in the semiconductor substrate having a second conductivity type. An implant of dopant of the second conductivity type is conducted to form a buried JFET gate region in the semiconductor substrate under the conduction path region. The implant is configured to further form the device isolating structure in which the Schottky diode is disposed.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: February 20, 2018
    Assignee: NXP USA, INC.
    Inventors: Weize Chen, Xin Lin, Patrice M. Parris
  • Patent number: 9893164
    Abstract: A method of fabricating a bipolar transistor device includes performing a first plurality of implantation procedures to implant dopant of a first conductivity type to form emitter and collector regions laterally spaced from one another in a semiconductor substrate, and performing a second plurality of implantation procedures to implant dopant of a second conductivity type in the semiconductor substrate to form a composite base region. The composite base region includes a base contact region, a buried region through which a buried conduction path between the emitter and collector regions is formed during operation, and a base link region electrically connecting the base contact region and the buried region. The base link region has a dopant concentration level higher than the buried region and is disposed laterally between the emitter and collector regions.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: February 13, 2018
    Assignee: NXP USA, INC.
    Inventors: Xin Lin, Daniel J Blomberg, Jiang-Kai Zuo
  • Patent number: 9871135
    Abstract: A semiconductor device is disclosed that includes a first region of a first conductivity type that includes a drain, a region of a second conductivity type abutting the first region in a lateral direction and a vertical direction to form an interface between the first conductivity type and the second conductivity type, wherein the drain region is spaced apart from the interface. A source region of the first conductivity type abuts the second region in the lateral direction and vertical directions. A control gate structure includes a conductive layer that is spaced apart from the drain region by a first dimension in the lateral direction. A shallow trench isolation (STI) region having a second dimension in the lateral direction is disposed at a location of the first region between the source and drain regions, wherein the second dimension is less than one-half of the first dimension.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: January 16, 2018
    Assignee: NXP USA, Inc.
    Inventors: Xin Lin, Hongning Yang, Ronghua Zhu, Jiang-Kai Zuo
  • Publication number: 20170352756
    Abstract: A semiconductor device is disclosed that includes a first region of a first conductivity type that includes a drain, a region of a second conductivity type abutting the first region in a lateral direction and a vertical direction to form an interface between the first conductivity type and the second conductivity type, wherein the drain region is spaced apart from the interface. A source region of the first conductivity type abuts the second region in the lateral direction and vertical directions. A control gate structure includes a conductive layer that is spaced apart from the drain region by a first dimension in the lateral direction. A shallow trench isolation (STI) region having a second dimension in the lateral direction is disposed at a location of the first region between the source and drain regions, wherein the second dimension is less than one-half of the first dimension.
    Type: Application
    Filed: June 2, 2016
    Publication date: December 7, 2017
    Inventors: Xin Lin, Hongning Yang, Ronghua Zhu, Jiang-Kai Zuo
  • Patent number: 9831338
    Abstract: A semiconductor device includes a semiconductor substrate, a body region disposed in the semiconductor substrate and having a first conductivity type, a composite source region disposed in the semiconductor substrate adjacent the body region and having a second conductivity type, and a gate structure supported by the semiconductor substrate and having a side adjacent the composite source region. The composite source region includes a plurality of first constituent source regions disposed along the side of the gate structure and having the second conductivity type, and a second constituent source region disposed along the side of the gate structure and between two first constituent source regions of the plurality of first constituent source regions, the second constituent source region having the second conductivity type. The second constituent source region has a different dopant concentration level than the plurality of first constituent source regions.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: November 28, 2017
    Assignee: NXP USA, Inc.
    Inventors: Xin Lin, Hongning Yang, Ronghua Zhu, Jiang-Kai Zuo
  • Patent number: 9825169
    Abstract: A device includes a semiconductor substrate, a buried doped isolation layer disposed in the semiconductor substrate to isolate the device, a drain region disposed in the semiconductor substrate and to which a voltage is applied during operation, and a depletion region disposed in the semiconductor substrate and having a conductivity type in common with the buried doped isolation barrier and the drain region. The depletion region reaches a depth in the semiconductor substrate to be in contact with the buried doped isolation layer. The depletion region establishes an electrical link between the buried doped isolation layer and the drain region such that the buried doped isolation layer is biased at a voltage level lower than the voltage applied to the drain region.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: November 21, 2017
    Assignee: NXP USA, Inc.
    Inventors: Xin Lin, Xu Cheng, Hongning Yang, Zhihong Zhang, Jiang-Kai Zuo
  • Publication number: 20170269905
    Abstract: Embodiments of the present disclosure provide a method and apparatus of software solution delivery. The method comprises: receiving hardware requirements and software requirements associated with the software solution; determining, according to the hardware requirements and the software requirements, hardware resources and delivery contents associated with the software solution based on a set of predefined policies; retrieving the determined hardware resources from a pool of hardware resources; and delivering the delivery contents to the determined hardware resources. The embodiments of the present disclosure use a set of predefined policies to determine hardware resources to which a software solution will be delivered, as well as delivery contents associated with the software solution to be delivered, thereby providing an automated software solution delivery process.
    Type: Application
    Filed: March 20, 2017
    Publication date: September 21, 2017
    Inventors: Sandro Jiawei Wu, Lynn Xin Lin, Peter Yi Huang, Bruce Yunlong Yang, Sophia Rongyan Xia
  • Patent number: 9761707
    Abstract: A device formed in a semiconductor substrate is disclosed. The device include a core device formed in the semiconductor substrate, a first deep trench isolation barrier surrounding the core device and a secondary device formed in the semiconductor substrate outside the deep trench isolation barrier. The device also includes a second deep trench isolation barrier formed to isolate the secondary device from remaining part of the semiconductor substrate. A first portion of the secondary device is electrically connected to a first portion of the core device through a first electrical connector and a second portion of the secondary device is electrically connected to a second portion of the core device through a second electrical connector.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: September 12, 2017
    Assignee: NXP USA, INC.
    Inventors: Xin Lin, Ronghua Zhu, Hongning Yang
  • Patent number: 9728600
    Abstract: A device includes a semiconductor substrate, a doped isolation barrier disposed in the semiconductor substrate and defining a core device area within the doped isolation barrier, an isolation contact region disposed in the semiconductor substrate outside of the core device area, and a body region disposed in the semiconductor substrate within the core device area, and in which a channel is formed during operation. The body region is electrically tied to the isolation contact region. The body region and the doped isolation barrier have a common conductivity type. The body region is electrically isolated from the doped isolation barrier within the core device area. The doped isolation barrier and the isolation contact region are not electrically tied to one another such that the doped isolation barrier is biased at a different voltage level than the isolation contact region.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: August 8, 2017
    Assignee: NXP USA, Inc.
    Inventors: Hongning Yang, Daniel J. Blomberg, Xu Cheng, Xin Lin, Zhihong Zhang, Jiang-Kai Zuo
  • Publication number: 20170209593
    Abstract: The invention provides improved methods of conjugating an agent to a thiol moiety in a protein that contains at least one disulfide bond and at least one trisulfide bond. Exemplary embodiments include the production of antibody drug conjugates substantially free of impurities created in the presence of reactive sulfide moieties in the production processes.
    Type: Application
    Filed: January 24, 2017
    Publication date: July 27, 2017
    Inventors: Jayme FRANKLIN, Xin Xin LIN, Jeffrey GORRELL, Timothy TULLY, Matthew HUTCHINSON, Charity Tucker BECHTEL
  • Patent number: 9691880
    Abstract: A device includes a semiconductor substrate, source and drain regions in the semiconductor substrate and spaced from one another along a first lateral dimension, and a drift region in the semiconductor substrate and through which charge carriers drift during operation upon application of a bias voltage between the source and drain regions. The drift region has a notched dopant profile in a second lateral dimension along an interface between the drift region and the drain region.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: June 27, 2017
    Assignee: NXP USA, INC.
    Inventors: Hongning Yang, Xin Lin, Zhihong Zhang, Jiang-kai Zuo
  • Publication number: 20170179279
    Abstract: A device includes a semiconductor substrate, a buried doped isolation layer disposed in the semiconductor substrate to isolate the device, a drain region disposed in the semiconductor substrate and to which a voltage is applied during operation, and a depletion region disposed in the semiconductor substrate and having a conductivity type in common with the buried doped isolation barrier and the drain region. The depletion region reaches a depth in the semiconductor substrate to be in contact with the buried doped isolation layer. The depletion region establishes an electrical link between the buried doped isolation layer and the drain region such that the buried doped isolation layer is biased at a voltage level lower than the voltage applied to the drain region.
    Type: Application
    Filed: December 16, 2015
    Publication date: June 22, 2017
    Inventors: Xin Lin, Xu Cheng, Hongning Yang, Zhihong Zhang, Jiang-Kai Zuo
  • Publication number: 20170169563
    Abstract: A method for determining a background component and a dynamic component of an image frame from an under-sampled data sequence obtained in a dynamic MRI application is provided. The two components are determined by optimizing a low-rank component and a sparse component of the image frame in a sense of minimizing a weighted sum of terms. The terms include a Schattenp=1/2 (S1/2-norm) of the low-rank component, an L1/2-norm of the sparse component additionally sparsified by a sparsifying transform, and an L2-norm of a difference between the sensed data sequence and a reconstructed data sequence. The reconstructed one is obtained by sub-sampling the image frame according to an encoding or acquiring operation. The background and dynamic components are the low-rank and sparse components, respectively. Experimental results demonstrate that the method outperforms an existing technique that minimizes a nuclear-norm of the low-rank component and an L1-norm of the sparse component.
    Type: Application
    Filed: December 11, 2015
    Publication date: June 15, 2017
    Inventors: Yong LIANG, Liang-Yong XIA, Xu-Xin LIN, Xiao-Ying LIU, Kuok-Fan CHAN
  • Patent number: 9680011
    Abstract: A device includes a semiconductor substrate, a doped isolation barrier disposed in the semiconductor substrate to isolate the device, a drain region disposed in the semiconductor substrate and to which a voltage is applied during operation, and a depleted well region disposed in the semiconductor substrate, and having a conductivity type in common with the doped isolation barrier and the drain region. The depleted well region is positioned between the doped isolation barrier and the drain region to electrically couple the doped isolation barrier and the drain region such that the doped isolation barrier is biased at a voltage level lower than the voltage applied to the drain region.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: June 13, 2017
    Assignee: NXP USA, Inc.
    Inventors: Zhihong Zhang, Daniel J. Blomberg, Xu Cheng, Xin Lin, Hongning Yang, Jiang-Kai Zuo
  • Patent number: 9647082
    Abstract: A diode includes a semiconductor substrate having a surface; a first contact region disposed at the surface of the semiconductor substrate and having a first conductivity type; and a second contact region disposed at the surface, laterally spaced from the first contact region, and having a second conductivity type. The diode also includes a buried region disposed in the semiconductor substrate vertically adjacent to the first contact region, having the second conductivity type, and electrically connected with the second contact region; and an isolation region disposed at the surface between the first and second contact regions. The diode also includes a separation region disposed at the surface between the first contact region and the isolation region, the separation region formed from a portion of a first well region disposed in the semiconductor substrate that extends to the surface.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: May 9, 2017
    Assignee: NXP USA, Inc.
    Inventors: Xin Lin, Daniel J. Blomberg, Hongning Yang, Jiang-Kai Zuo
  • Publication number: 20170125584
    Abstract: A device includes a semiconductor substrate, a doped isolation barrier disposed in the semiconductor substrate to isolate the device, a drain region disposed in the semiconductor substrate and to which a voltage is applied during operation, and a depleted well region disposed in the semiconductor substrate, and having a conductivity type in common with the doped isolation barrier and the drain region. The depleted well region is positioned between the doped isolation barrier and the drain region to electrically couple the doped isolation barrier and the drain region such that the doped isolation barrier is biased at a voltage level lower than the voltage applied to the drain region.
    Type: Application
    Filed: October 29, 2015
    Publication date: May 4, 2017
    Inventors: Zhihong Zhang, Daniel J. Blomberg, Xu Cheng, Xin Lin, Hongning Yang, Jiang-Kai Zuo
  • Publication number: 20170109992
    Abstract: Systems and methods of a safety belt to be worn by individuals in the course of physical activities such as walking, running, biking, etc. Safety belts of the inventive subject matter include one or more sensors that are used to develop a kinematic status of the individual wearing the safety belt. Kinematic status information can be broadcast out wirelessly, and it can be used to determine whether to generate an alert. Some embodiments of the safety belt can detect the presence of a hazard in the vicinity of an individual wearing the safety belt.
    Type: Application
    Filed: October 19, 2016
    Publication date: April 20, 2017
    Inventors: Michelle Jing LIN, Eric Xin LIN, Haitao LIN, Jiali LI