Patents by Inventor Xin Lin

Xin Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8860042
    Abstract: A light component includes a printed circuit board and a plurality of lighting emitting diodes (LEDs). The printed circuit board has a metal substrate. The LEDs are disposed on the printed circuit board, wherein two opposite edges of the metal substrate protrude out and are bent towards the LEDs to form two metal clamps.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: October 14, 2014
    Assignee: Lextar Electronics Corporation
    Inventors: Xin-Lin Zhou, Chen-Yi Su
  • Patent number: 8853780
    Abstract: A device includes a semiconductor substrate, source and drain regions in the semiconductor substrate, a channel region in the semiconductor substrate between the source and drain regions through which charge carriers flow during operation from the source region to the drain region, and a drift region in the semiconductor substrate, on which the drain region is disposed, and through which the charge carriers drift under an electric field arising from application of a bias voltage between the source and drain regions. A PN junction along the drift region includes a first section at the drain region and a second section not at the drain region. The drift region has a lateral profile that varies such that the first section of the PN junction is shallower than the second section of the PN junction.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: October 7, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Hongning Yang, Daniel J. Blomberg, Xu Cheng, Xin Lin, Won Gi Min, Zhihong Zhang, Jiang-Kai Zuo
  • Patent number: 8847358
    Abstract: A bipolar transistor having an upper surface, comprises a multilevel collector structure formed in a base region of opposite conductivity type and having a first part of a first vertical extent coupled to a collector contact, an adjacent second part having a second vertical extent a third part of a third vertical extent and desirably of a depth different from a depth of the second part, coupled to the second part by a fourth part desirably having a fourth vertical extent less than the third vertical extent. A first base region portion overlies the second part, a second base region portion separates the third part from an overlying base contact region, and other base region portions laterally surround and underlie the multilevel collector structure. An emitter proximate the upper surface is laterally spaced from the multilevel collector structure. This combination provides improved gain, Early Voltage and breakdown voltages.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: September 30, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Xin Lin, Daniel J Blomberg, Jiang-Kai Zuo
  • Publication number: 20140242762
    Abstract: A method of fabricating a Schottky diode having an integrated junction field-effect transistor (JFET) device includes forming a conduction path region in a semiconductor substrate along a conduction path of the Schottky diode. The conduction path region has a first conductivity type. A lateral boundary of an active area of the Schottky diode is defined by forming a well of a device isolating structure in the semiconductor substrate having a second conductivity type. An implant of dopant of the second conductivity type is conducted to form a buried JFET gate region in the semiconductor substrate under the conduction path region. The implant is configured to further form the device isolating structure in which the Schottky diode is disposed.
    Type: Application
    Filed: May 5, 2014
    Publication date: August 28, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Weize Chen, Xin Lin, Patrice M. Parris
  • Publication number: 20140231961
    Abstract: Semiconductor device structures and related fabrication methods are provided. An exemplary semiconductor device structure includes a collector region of semiconductor material having a first conductivity type, a base region of semiconductor material within the collector region, the base region having a second conductivity type opposite the first conductivity type, and a doped region of semiconductor material having the second conductivity type, wherein the doped region is electrically connected to the base region and the collector region resides between the base region and the doped region. In exemplary embodiments, the dopant concentration of the doped region is greater than a dopant concentration of the collector region to deplete the collector region as the electrical potential of the base region exceeds that of the collector region.
    Type: Application
    Filed: February 21, 2013
    Publication date: August 21, 2014
    Inventors: Xin Lin, Daniel J. Blomberg, Jiang-Kai Zuo
  • Publication number: 20140235025
    Abstract: Semiconductor device structures and related fabrication methods are provided. An exemplary semiconductor device structure includes a first vertical drift region of semiconductor material, a second vertical drift region of semiconductor material, and a buried lateral drift region of semiconductor material that abuts the vertical drift regions. In one or more embodiments, the vertical drift regions and buried lateral drift region have the same conductivity type, wherein a body region of the opposite conductivity type overlies the buried lateral drift region between the vertical drift regions.
    Type: Application
    Filed: April 24, 2014
    Publication date: August 21, 2014
    Inventors: HONGNING YANG, XIN LIN, JIANG-KAI ZUO
  • Publication number: 20140209988
    Abstract: A multiple time programmable nonvolatile memory device having a single polysilicon memory cell includes a select transistor and a bitcell transistor. The bitcell transistor has asymmetrically configured source, drain, and channel regions including asymmetrically configured source-body and drain-body junctions. Compared with the drain-body junction, the impurity concentration gradient of the source-body junction is more gradual, which may significantly improve program disturb immunity. The bitcell transistor gate may be connected to an electrode of a coupling capacitor, but may be otherwise floating or Ohmically isolated. The floating gate of the bitcell is protected by a dielectric layer for potentially improved data retention.
    Type: Application
    Filed: January 31, 2013
    Publication date: July 31, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Xin Lin, Hongning Yang, Zhihong Zhang, Jiang-Kai Zuo
  • Patent number: 8791546
    Abstract: A bipolar transistor comprises at least first and second connected emitter-base (EB) junctions having, respectively, different first and second EB junction depths, and a buried layer (BL) collector having a greater third depth. The emitters and bases corresponding to the different EB junctions are provided during a chain implant. An isolation region overlies the second EB junction location thereby providing its shallower EB junction depth. The BL collector does not underlie the first EB junction and is laterally spaced therefrom by a variable amount to facilitate adjusting the transistor's properties. In other embodiments, the BL collector can underlie at least a portion of the second EB junction. Regions of opposite conductivity type over-lie and under-lie the BL collector, which is relatively lightly doped, thereby preserving the breakdown voltage. The transistor can be readily “tuned” by mask adjustments alone to meet various device requirements.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: July 29, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Xin Lin, Bernhard H. Grote, Jiang-Kai Zuo
  • Publication number: 20140203358
    Abstract: A device includes a semiconductor substrate, source and drain regions in the semiconductor substrate and spaced from one another along a first lateral dimension, and a drift region in the semiconductor substrate and through which charge carriers drift during operation upon application of a bias voltage between the source and drain regions. The drift region has a notched dopant profile in a second lateral dimension along an interface between the drift region and the drain region.
    Type: Application
    Filed: January 23, 2013
    Publication date: July 24, 2014
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Hongning Yang, Xin Lin, Zhihong Zhang, Jiang-Kai Zuo
  • Publication number: 20140206168
    Abstract: Adverse tradeoff between BVDSS and Rdson in LDMOS devices employing a drift space adjacent the drain, is avoided by providing a lightly doped region of a first conductivity type (CT) separating the first CT drift space from an opposite CT WELL region in which the first CT source is located, and a further region of the opposite CT (e.g., formed by an angled implant) extending through part of the WELL region under an edge of the gate located near a boundary of the WELL region into the lightly doped region, and a shallow still further region of the first CT Ohmically coupled to the source and ending near the gate edge whereby the effective channel length in the further region is reduced to near zero. Substantial improvement in BVDSS and/or Rdson can be obtained without degrading the other or significant adverse affect on other device properties.
    Type: Application
    Filed: November 4, 2013
    Publication date: July 24, 2014
    Inventors: Hongning Yang, XIN LIN, JIANG-KAI ZUO
  • Publication number: 20140187014
    Abstract: Methods are provided for forming a device that includes merged vertical and lateral transistors with collector regions of a first conductivity type between upper and lower base regions of opposite conductivity type that are Ohmically coupled via intermediate regions of the same conductivity type and to the base contact. The emitter is provided in the upper base region and the collector contact is provided in outlying sinker regions extending to the thin collector regions and an underlying buried layer. As the collector voltage increases part of the thin collector regions become depleted of carriers from the top by the upper and from the bottom by the lower base regions. This clamps the collector regions' voltage well below the breakdown voltage of the PN junction formed between the buried layer and the lower base region. The gain and Early Voltage are increased and decoupled and a higher breakdown voltage is obtained.
    Type: Application
    Filed: March 6, 2014
    Publication date: July 3, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: XIN LIN, DANIEL J. BLOMBERG, JIANG-KAI ZUO
  • Publication number: 20140177381
    Abstract: The invention provides a working trough and a method for maintaining a uniform temperature of a working fluid. The working trough is applied to an electrical discharge machine that performs wire cutting using the working fluid. The method for maintaining a uniform temperature of the working fluid is applied to the working trough and characterized by forming opening structures in a receiving slot of the working trough such that a spiral swirl having a predetermined height is allowed to be formed in the working fluid, thereby maintaining a uniform temperature of the working fluid in the receiving slot when a wire cutting process is performed in the working fluid by the electrical discharge machine. The disturbance of the spiral swirl also facilitates the discharge of scraps. The present invention further has an advantage of low cost.
    Type: Application
    Filed: February 27, 2014
    Publication date: June 26, 2014
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Tzuo-Liang LUO, En-Sheng CHANG, Jui-Kuan LIN, Yang-Xin LIN, Chin-Mou HSU
  • Patent number: 8748981
    Abstract: Semiconductor device structures and related fabrication methods are provided. An exemplary semiconductor device structure includes a first vertical drift region of semiconductor material, a second vertical drift region of semiconductor material, and a buried lateral drift region of semiconductor material that abuts the vertical drift regions. In one or more embodiments, the vertical drift regions and buried lateral drift region have the same conductivity type, wherein a body region of the opposite conductivity type overlies the buried lateral drift region between the vertical drift regions.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: June 10, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Hongning Yang, Xin Lin, Jiang-Kai Zuo
  • Patent number: 8735950
    Abstract: A device includes a semiconductor substrate, first and second electrodes supported by the semiconductor substrate, laterally spaced from one another, and disposed at a surface of the semiconductor substrate to form an Ohmic contact and a Schottky junction, respectively. The device further includes a conduction path region in the semiconductor substrate, having a first conductivity type, and disposed along a conduction path between the first and second electrodes, a buried region in the semiconductor substrate having a second conductivity type and disposed below the conduction path region, and a device isolating region electrically coupled to the buried region, having the second conductivity type, and defining a lateral boundary of the device. The device isolating region is electrically coupled to the second electrode such that a voltage at the second electrode during operation is applied to the buried region to deplete the conduction path region.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: May 27, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Weize Chen, Xin Lin, Patrice M. Parris
  • Publication number: 20140134820
    Abstract: Instability and drift sometimes observed in bipolar transistors, having a portion of the base extending to the transistor surface between the emitter and base contact, can be reduced or eliminated by providing a further doped region of the same conductivity type as the emitter at the transistor surface between the emitter and the base contact. The further region is desirably more heavily doped than the base region at the surface and less heavily doped than the adjacent emitter. In another embodiment, a still or yet further region of the same conductivity type as the emitter is provided either between the further region and the emitter or laterally within the emitter. The still or yet further region is desirably more heavily doped than the further region. Such further regions shield the near surface base region from trapped charge that may be present in dielectric layers or interfaces overlying the transistor surface.
    Type: Application
    Filed: January 16, 2014
    Publication date: May 15, 2014
    Inventors: XIN LIN, DANIEL J. BLOMBERG, HONGNING YANG, JIANG-KAI ZUO
  • Publication number: 20140110815
    Abstract: A trench-isolated RESURF diode structure (100) is provided which includes a substrate (150) in which is formed anode (130, 132) and cathode (131) contact regions separated from one another by a shallow trench isolation region (114, 115), along with a non-uniform cathode region (104) and peripheral anode regions (106, 107) which define vertical and horizontal p-n junctions under the anode contact regions (130, 132), including a horizontal cathode/anode junction that is shielded by the heavily doped anode contact region (132).
    Type: Application
    Filed: October 19, 2012
    Publication date: April 24, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Xin Lin, Hongning Yang, Jiang-Kai Zuo
  • Publication number: 20140110814
    Abstract: A trench-isolated RESURF diode structure (100) is provided which includes a substrate (150) in which is formed anode (130, 132) and cathode (131) contact regions separated from one another by a shallow trench isolation region (114, 115), along with a buried cathode extension region (104) formed under a RESURF anode extension region (106, 107) such that the cathode extension region (104) extends beyond the cathode contact (131) to be sandwiched between upper and lower regions (103, 106, 107) of opposite conductivity type.
    Type: Application
    Filed: October 19, 2012
    Publication date: April 24, 2014
    Inventors: Xin Lin, Daniel J. Blomberg, Hongning Yang, Jiang-Kai Zuo
  • Patent number: 8696191
    Abstract: The invention provides a working trough and a method for maintaining a uniform temperature of a working fluid. The working trough is applied to an electrical discharge machine that performs wire cutting using the working fluid. The method for maintaining a uniform temperature of the working fluid is applied to the working trough and characterized by forming opening structures in a receiving slot of the working trough such that a spiral swirl having a predetermined height is allowed to be formed in the working fluid, thereby maintaining a uniform temperature of the working fluid in the receiving slot when a wire cutting process is performed in the working fluid by the electrical discharge machine. The disturbance of the spiral swirl also facilitates the discharge of scraps. The present invention further has an advantage of low cost.
    Type: Grant
    Filed: January 6, 2009
    Date of Patent: April 15, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Tzuo-Liang Luo, En-Sheng Chang, Jui-Kuan Lin, Yang-Xin Lin, Chin-Mou Hsu
  • Publication number: 20140070312
    Abstract: Semiconductor device structures and related fabrication methods are provided. An exemplary semiconductor device structure includes a first vertical drift region of semiconductor material, a second vertical drift region of semiconductor material, and a buried lateral drift region of semiconductor material that abuts the vertical drift regions. In one or more embodiments, the vertical drift regions and buried lateral drift region have the same conductivity type, wherein a body region of the opposite conductivity type overlies the buried lateral drift region between the vertical drift regions.
    Type: Application
    Filed: September 7, 2012
    Publication date: March 13, 2014
    Inventors: Hongning Yang, Xin Lin, Jiang-Kai Zuo
  • Patent number: 8669640
    Abstract: An improved device (20) is provided, comprising, merged vertical (251) and lateral transistors (252), comprising thin collector regions (34) of a first conductivity type sandwiched between upper (362) and lower (30) base regions of opposite conductivity type that are Ohmically coupled via intermediate regions (32, 361) of the same conductivity type and to the base contact (38). The emitter (40) is provided in the upper base region (362) and the collector contact (42) is provided in outlying sinker regions (28) extending to the thin collector regions (34) and an underlying buried layer (28). As the collector voltage increases part of the thin collector regions (34) become depleted of carriers from the top by the upper (362) and from the bottom by the lower (30) base regions. This clamps the thin collector regions' (34) voltage well below the breakdown voltage of the PN junction formed between the buried layer (28) and the lower base region (30).
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: March 11, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Xin Lin, Daniel J. Blomberg, Jiang-Kai Zuo