Patents by Inventor Xin Miao

Xin Miao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210151607
    Abstract: A semiconductor device and method of forming the same including a plurality of vertically aligned long channel semiconductor channel layers disposed above a substrate layer, a plurality of vertically aligned short channel semiconductor channel layers disposed above a substrate layer, and a plurality of tri-layer dielectric spacers disposed between the vertically aligned long channel semiconductor layers.
    Type: Application
    Filed: November 18, 2019
    Publication date: May 20, 2021
    Inventors: Xin Miao, Ruilong Xie, Jingyun Zhang, Choonghyun Lee
  • Publication number: 20210151601
    Abstract: A method of fabricating a semiconductor device is described. The method includes forming a nanosheet stack on a substrate, the nanosheet stack includes nanosheet channel layers. A gate is formed around the nanosheet channel layers of the nanosheet stack. A strained material is formed along a sidewall surface of the gate. The strained material is configured to create strain in the nanosheet channel layers of the nanosheet stack.
    Type: Application
    Filed: December 29, 2020
    Publication date: May 20, 2021
    Inventors: Xin Miao, Kangguo Cheng, Wenyu XU, Chen Zhang
  • Patent number: 11011411
    Abstract: A semiconductor wafer includes a substrate. The substrate includes a first substrate region doped with a first dopant and a second substrate region doped with a second dopant. The semiconductor wafer further includes a buried oxide (BOX) layer formed on the substrate and a channel layer formed above the BOX layer. A first transistor is operably disposed on the substrate in the first substrate region and a second transistor is operably disposed on the substrate in the second substrate region. First doped source and drain structures electrically connected to the substrate in the first substrate region and separated by portions of the channel layer and the BOX layer. Second doped source and drain structures electrically connected to the substrate in the second substrate region and separated by portions of the channel layer and the BOX layer.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: May 18, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chen Zhang, Xin Miao, Wenyu Xu, Kangguo Cheng
  • Patent number: 11004933
    Abstract: Field effect transistors include a stack of nanowires of vertically arranged channel layers. A source and drain region is disposed at respective ends of the vertically arranged channel layers. A gate stack is formed over, around, and between the vertically arranged channel layers. Internal spacers are each formed between the gate stack and a respective source or drain region, with at least one pair of spacers being positioned above an uppermost channel layer.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: May 11, 2021
    Assignee: Tessera, Inc.
    Inventors: Josephine B. Chang, Bruce B. Doris, Michael A. Guillorn, Isaac Lauer, Xin Miao
  • Patent number: 11004678
    Abstract: A semiconductor device including a gate structure present on at least two suspended channel structures, and a composite spacer present on sidewalls of the gate structure. The composite spacer may include a cladding spacer present along a cap portion of the gate structure, and an inner spacer along the channel portion of the gate structure between adjacent channel semiconductor layers of the suspended channel structures. The inner spacer may include a crescent shape with a substantially central seam.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: May 11, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce B. Doris, Michael A. Guillorn, Isaac Lauer, Xin Miao
  • Patent number: 10998441
    Abstract: A method of forming a semiconductor device that includes forming a strain relaxed buffer (SRB) layer atop a supporting substrate, and epitaxially forming a tensile semiconductor material atop a first portion of the strain relaxed buffer layer (SRB) layer. A second portion of the SRB layer is then removed, and a semiconductor material including a base material of silicon and phosphorus is formed atop a surface of the supporting substrate exposed by removing the second portion of the SRB layer. A compressive semiconductor material is epitaxially forming atop the semiconductor material including the base material of silicon and phosphorus. Compressive FinFET structures can then be formed from the compressive semiconductor material and tensile FinFET structures can then be formed from the tensile semiconductor material.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: May 4, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Nicolas J. Loubet, Xin Miao, Alexander Reznicek
  • Patent number: 10991798
    Abstract: Embodiments of the invention are directed to a method of forming a nanosheet transistor. A non-limiting example of the method includes forming a nanosheet stack having alternating layers of channel nanosheets and sacrificial nanosheets, wherein each of the layers of channel nanosheets includes a first type of semiconductor material, and wherein each of the layers of sacrificial nanosheets includes a second type of semiconductor material. The layers of sacrificial nanosheets are removed from the nanosheet stack, and layers of replacement sacrificial nanosheets are formed in the spaces that were occupied by the sacrificial nanosheets. Each of the layers of replacement sacrificial nanosheets includes a first type of non-semiconductor material.
    Type: Grant
    Filed: January 21, 2019
    Date of Patent: April 27, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Wenyu Xu, Chen Zhang, Kangguo Cheng, Xin Miao
  • Publication number: 20210119043
    Abstract: A method of forming a vertical fin field effect transistor device is provided. The method includes forming a vertical fin and fin template on a bottom source/drain layer, wherein the fin template is on the vertical fin. The method further includes forming a gate structure on the vertical fin and fin template, and forming a top spacer layer on the gate structure. The method further includes removing the fin template to form an opening in the top spacer layer, and removing a portion of a gate electrode of the gate structure to form a cavity; and removing a portion of a gate dielectric layer of the gate structure to form a groove around the vertical fin.
    Type: Application
    Filed: December 29, 2020
    Publication date: April 22, 2021
    Inventors: Kangguo Cheng, Chen Zhang, Xin Miao, Wenyu Xu
  • Publication number: 20210118878
    Abstract: Devices and methods are provided for forming single diffusion break isolation structures for integrated circuit devices including gate-all-around FET devices such as nanosheet FET devices and nanowire FET devices. For example, a semiconductor integrated circuit device includes first and second gate-all-around field-effect transistor devices disposed in first and second device regions, respectively, of a semiconductor substrate. A single diffusion break isolation structure is disposed between the first and second device regions. The single diffusion break isolation structure includes a dummy gate structure disposed on the semiconductor substrate between a first source/drain layer of the first gate-all-around field-effect transistor device and a second source/drain layer of the second gate all-around field-effect transistor device. The single diffusion break isolation structure is configured to electrically isolate the first and second source/drain layers.
    Type: Application
    Filed: December 29, 2020
    Publication date: April 22, 2021
    Inventors: Wenyu Xu, Xin Miao, Chen Zhang, Kangguo Cheng
  • Patent number: 10985161
    Abstract: Devices and methods are provided for forming single diffusion break isolation structures for integrated circuit devices including gate-all-around FET devices such as nanosheet FET devices and nanowire FET devices. For example, a semiconductor integrated circuit device includes first and second gate-all-around field-effect transistor devices disposed in first and second device regions, respectively, of a semiconductor substrate. A single diffusion break isolation structure is disposed between the first and second device regions. The single diffusion break isolation structure includes a dummy gate structure disposed on the semiconductor substrate between a first source/drain layer of the first gate-all-around field-effect transistor device and a second source/drain layer of the second gate all-around field-effect transistor device. The single diffusion break isolation structure is configured to electrically isolate the first and second source/drain layers.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: April 20, 2021
    Assignee: International Business Machines Corporation
    Inventors: Wenyu Xu, Xin Miao, Chen Zhang, Kangguo Cheng
  • Publication number: 20210111195
    Abstract: The subject disclosure relates to high mobility complementary metal-oxide-semiconductor (CMOS) devices and techniques for forming the CMOS devices with fins formed directly on the insulator. According to an embodiment, a method for forming such a high mobility CMOS device can comprise forming, via a first epitaxial growth of a first material, first pillars within first trenches formed within a dielectric layer, wherein the dielectric layer is formed on a silicon substrate, and wherein the first pillars comprise first portions with defects and second portions without the defects. The method can further comprise forming second trenches within a first region of the dielectric layer, and further forming second pillars within the second trenches via a second epitaxial growth of one or more second materials using the second portions of the first pillars as seeds for the second epitaxial growth.
    Type: Application
    Filed: December 23, 2020
    Publication date: April 15, 2021
    Inventors: Xin Miao, Chen Zhang, Kangguo Cheng, Wenyu Xu
  • Patent number: 10978356
    Abstract: A method of forming a semiconductor structure includes forming a recess within a semiconductor substrate, the recess is located between adjacent fins of a plurality of fins on the semiconductor substrate, forming a first liner above a perimeter including the recess, top surfaces of the semiconductor substrate, and top surfaces and sidewalls of the plurality of fins, the first liner includes a first oxide material, forming a second liner directly above the first liner, and forming a third liner directly above the second liner, the third liner includes a nitride material, the second liner includes a second oxide material capable of creating a dipole effect that neutralizes positive charges generated within the third liner and between the third liner and the first liner.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: April 13, 2021
    Assignee: International Business Machines Corporation
    Inventors: Choonghyun Lee, Xin Miao, Alexander Reznicek, Jingyun Zhang
  • Publication number: 20210102242
    Abstract: Described herein are devices, systems, fluidic devices, kits, and methods for detection of target nucleic acids associated with diseases, cancers, genetic disorders, a genotype, a phenotype, or ancestral origin. The devices, systems, fluidic devices, kits, and methods may comprise reagents of a guide nucleic acid targeting a target nucleic acid, a programmable nuclease, and a single stranded detector nucleic acid with a detection moiety. The target nucleic acid of interest may be indicative of a disease, and the disease may be communicable diseases, or of a cancer or genetic disorder. The target nucleic acid of interest may be indicative of a genotype, a phenotype, or ancestral origin.
    Type: Application
    Filed: September 29, 2020
    Publication date: April 8, 2021
    Inventors: Janice Sha CHEN, Ashley TEHRANCHI, Andrew Besancon LANE, James Paul BROUGHTON, Lucas Benjamin HARRINGTON, Maria-Nefeli TSALOGLOU, Xin MIAO, Clare Louise FASCHING, Jasmeet SINGH, Pedro Patrick Draper GALARZA
  • Patent number: 10971522
    Abstract: The subject disclosure relates to high mobility complementary metal-oxide-semiconductor (CMOS) devices and techniques for forming the CMOS devices with fins formed directly on the insulator. According to an embodiment, a method for forming such a high mobility CMOS device can comprise forming, via a first epitaxial growth of a first material, first pillars within first trenches formed within a dielectric layer, wherein the dielectric layer is formed on a silicon substrate, and wherein the first pillars comprise first portions with defects and second portions without the defects. The method can further comprise forming second trenches within a first region of the dielectric layer, and further forming second pillars within the second trenches via a second epitaxial growth of one or more second materials using the second portions of the first pillars as seeds for the second epitaxial growth.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: April 6, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Xin Miao, Chen Zhang, Kangguo Cheng, Wenyu Xu
  • Patent number: 10964601
    Abstract: A method of fabricating a vertical fin field effect transistor with a merged top source/drain, including, forming a source/drain layer at the surface of a substrate, forming a plurality of vertical fins on the source/drain layer; forming protective spacers on each of the plurality of vertical fins, forming a sacrificial plug between two protective spacers, forming a filler layer on the protective spacers not in contact with the sacrificial plug, and selectively removing the sacrificial plug to form an isolation region trench between the two protective spacers.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: March 30, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Xin Miao, Wenyu Xu, Chen Zhang
  • Patent number: 10964602
    Abstract: A method of fabricating a vertical fin field effect transistor with a merged top source/drain, including, forming a source/drain layer at the surface of a substrate, forming a plurality of vertical fins on the source/drain layer; forming protective spacers on each of the plurality of vertical fins, forming a sacrificial plug between two protective spacers, forming a filler layer on the protective spacers not in contact with the sacrificial plug, and selectively removing the sacrificial plug to form an isolation region trench between the two protective spacers.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: March 30, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Xin Miao, Wenyu Xu, Chen Zhang
  • Publication number: 20210091207
    Abstract: A method of forming a semiconductor device and resulting structure in which a trench is formed extending through a plurality of layers on a semiconductor substrate. The plurality of layers includes a sequence of dielectric materials. A first portion of the plurality of layers corresponds to a bottom vertical field effect transistor (VFET) and a second portion of the plurality of layers corresponds to a top VFET. A sacrificial layer separates the bottom VFET from the top VFET. A fin is formed within the trench by epitaxially growing a semiconductor material. A hard mask is formed above a central portion of the plurality of layers. Portions of the plurality of layers not covered by the hard mask are removed. The first portion of the plurality of layers is covered to remove the sacrificial layer. The recess resulting from the removal of the sacrificial layer is filled with an oxide material.
    Type: Application
    Filed: September 25, 2019
    Publication date: March 25, 2021
    Inventors: Lan Yu, Xin Miao, Chen Zhang, Heng Wu, Kangguo Cheng
  • Patent number: 10957798
    Abstract: A method of fabricating a semiconductor device is described. The method includes forming a nanosheet stack on a substrate, the nanosheet stack includes nanosheet channel layers. A gate is formed around the nanosheet channel layers of the nanosheet stack. A strained material is formed along a sidewall surface of the gate. The strained material is configured to create strain in the nanosheet channel layers of the nanosheet stack.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: March 23, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Xin Miao, Kangguo Cheng, Wenyu Xu, Chen Zhang
  • Patent number: 10957783
    Abstract: A method for fabricating a semiconductor device including a vertical transistor includes etching a longitudinal end portion of a fin on a substrate to form a gap exposing the substrate, forming a top source/drain region, and forming, around a horizontal portion and a vertical portion of a bottom source/drain region disposed on the substrate, a contact wrapping in a region including a location where the longitudinal end portion of the fin was removed by the etching.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: March 23, 2021
    Assignee: International Business Machines Corporation
    Inventors: Wenyu Xu, Chen Zhang, Kangguo Cheng, Xin Miao
  • Patent number: 10957693
    Abstract: Techniques for forming VFETs with differing gate lengths are provided. In one aspect, a method for forming a VFET device includes: patterning fins in a substrate, wherein at least one of the fins includes a vertical fin channel of a FET1 and at least another one of the fins includes a vertical fin channel of a FET2; forming a bottom source and drain; forming bottom spacers on the bottom source and drain; forming gates surrounding the vertical fin channel of the FET1 and FET2; forming top spacers on the gate; and forming top source and drains at the tops of the fins by varying a positioning of the top source and drains relative to at least one of the vertical fin channel of the FET1 and the FET2 such that the FET1/FET2 have an effective gate length Lgate1/Lgate2, wherein Lgate1>Lgate2. A VFET device is also provided.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: March 23, 2021
    Assignee: International Business Machines Corporation
    Inventors: Xin Miao, Chen Zhang, Kangguo Cheng, Juntao Li