Patents by Inventor Ya-Wen Lin

Ya-Wen Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9786818
    Abstract: A light emitting diode includes a first electrode, a second electrode and an epitaxial structure. The epitaxial structure is arranged on the first electrode, and electrically connects with the first electrode and the second electrode. The second electrode surrounds periphery of the epitaxial structure to reflect light from the epitaxial structure to emit out from the top of the epitaxial structure. This disclosure also relates to a method for manufacturing the light emitting diode. The light emitting diode and the method help solve the problem of low light efficiency of the light emitting diode.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: October 10, 2017
    Assignee: ADVANCED OPTOELECTRONIC TECHNOLOGY, INC.
    Inventors: Ching-Hsueh Chiu, Chia-Hung Huang, Ya-Wen Lin, Po-Min Tu, Shih-Cheng Huang
  • Publication number: 20170271558
    Abstract: An LED die includes a substrate, a pre-growth layer, a first insulating layer and a light emitting structure. The pre-growth layer, the first insulating layer and the light emitting structure are formed on the structure that order. The substrate includes a first electrode, a second electrode and an insulating part. The insulating part is formed between the first electrode and the second electrode. The LED die further includes a second insulating layer and a metal layer which are formed around the pre-growth layer. The present disclosure includes a method for manufacturing the LED die.
    Type: Application
    Filed: June 6, 2017
    Publication date: September 21, 2017
    Inventors: CHING-HSUEH CHIU, YA-WEN LIN, PO-MIN TU, SHIH-CHENG HUANG
  • Patent number: 9722142
    Abstract: An LED die includes a substrate, a pre-growth layer, a first insulating layer and a light emitting structure. The pre-growth layer, the first insulating layer and the light emitting structure are formed on the structure that order. The substrate includes a first electrode, a second electrode and an insulating part. The insulating part is formed between the first electrode and the second electrode. The LED die further includes a second insulating layer and a metal layer which are formed around the pre-growth layer. The present disclosure includes a method for manufacturing the LED die.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: August 1, 2017
    Assignee: ADVANCED OPTOELECTRONIC TECHNOLOGY, INC.
    Inventors: Ching-Hsueh Chiu, Ya-Wen Lin, Po-Min Tu, Shih-Cheng Huang
  • Patent number: 9680059
    Abstract: A flip-chip light emitting diode, including a substrate, an N-type semiconductor layer, a light emitting layer and a P-type semiconductor layer series mounted along a height direction of the flip-chip light emitting diode. A P electrode is formed on the P-type semiconductor layer and an N electrode is formed on the N-type semiconductor. A top surface of the substrate is away from the light emitting layer. A plurality of micron main portions is formed on the top surface. An outer surface of each main body has a plurality of nanometer protrusions. A method for manufacturing the flip chip light emitting diode is also provided.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: June 13, 2017
    Assignee: ADVANCED OPTOELECTRONIC TECHNOLOGY, INC.
    Inventors: Ching-Hsueh Chiu, Ya-Wen Lin, Po-Min Tu, Shih-Cheng Huang
  • Patent number: 9577163
    Abstract: The present disclosure provides a light emitting diode package including a substrate, a first electrode and a second electrode located on a first surface of the substrate, a plurality of light emitting diodes (LEDs) located between the first electrode and the second electrode, a plurality of retaining ring located on the first surface of the substrate. The LEDs are surrounded by the retaining ring therein. An encapsulation layer is mounted in the retaining ring and covers the LEDs therein. The encapsulation layer includes a first surface and an side surface extending from edges of the first surface. The side of the encapsulation layer contacts an inner surface of the retaining ring. The present disclosre also provides a method for manufacturing the above light emitting diode package.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: February 21, 2017
    Assignee: ADVANCED OPTOELECTRONIC TECHNOLOGY, INC.
    Inventors: Ching-Hsueh Chiu, Ya-Wen Lin, Po-Min Tu, Shih-Cheng Huang
  • Patent number: 9508896
    Abstract: A light emitting diode (LED) chip includes a first semiconductor layer, a first light emitting layer formed on the first semiconductor layer, a second light emitting layer formed on the first light emitting layer, and a second semiconductor layer formed on the second light emitting layer. The first light emitting layer emits light having a first color. The second light emitting layer emits light having a second color different from the first color.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: November 29, 2016
    Assignee: ADVANCED OPTOELECTRONICS TECHNOLOGY, INC.
    Inventors: Ching-Hsueh Chiu, Ya-Wen Lin, Po-Min Tu, Shih-Cheng Huang
  • Patent number: 9472721
    Abstract: An epitaxial substrate for growing a lighting emitting structure of a light emitting diode, includes a transparent base, a first buffer layer and a second buffer layer formed on the transparent base. The transparent base includes a first surface and a second surface opposite to the first surface. Plural protrusions are formed on the first surface of the transparent base. Each first buffer layer is formed on the outer surfaces of the plural protrusions. The second buffer layer fills in the recesses defined between two adjacent protrusions, and covers the first buffer layer. The refractive index of the first buffer layer is larger than that of the transparent base, and is less than that of the second buffer layer. This disclosure also relates a method for manufacturing the epitaxial substrate and a light emitting diode having the same.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: October 18, 2016
    Assignee: ADVANCED OPTOELECTRONIC TECHNOLOGY, INC.
    Inventors: Ching-Hsueh Chiu, Ya-Wen Lin, Po-Min Tu, Shih-Cheng Huang
  • Publication number: 20160240752
    Abstract: The present disclosure provides a light emitting diode package including a substrate, a first electrode and a second electrode located on a first surface of the substrate, a plurality of light emitting diodes (LEDs) located between the first electrode and the second electrode, a plurality of retaining ring located on the first surface of the substrate. The LEDs are surrounded by the retaining ring therein. An encapsulation layer is mounted in the retaining ring and covers the LEDs therein. The encapsulation layer includes a first surface and an side surface extending from edges of the first surface. The side of the encapsulation layer contacts an inner surface of the retaining ring. The present disclosre also provides a method for manufacturing the above light emitting diode package.
    Type: Application
    Filed: August 26, 2015
    Publication date: August 18, 2016
    Inventors: CHING-HSUEH CHIU, YA-WEN LIN, PO-MIN TU, SHIH-CHENG HUANG
  • Patent number: 9312658
    Abstract: An optoelectronic module includes a substrate, an LED and a laser LED formed on the substrate, simultaneously. A method for manufacturing an optoelectronic module includes following steps: providing a sapphire substrate, and forming two adoped GaN layers, an N-type GaN layer, an active layer and a P-type GaN layer on the sapphire substrate in sequence; providing a substrate and forming a metallic adhering layer on the substrate; forming an ohmic contact layer and a reflecting layer on the P-type GaN layer in series; arranging the reflecting layer on the adhering layer; stripping the sapphire substrate and the two doped GaN layers from the N-type GaN layer to form a semiconductor structure; etching a top end of the semiconductor structure to divide the semiconductor structure into a laser LED region and an LED region; forming two N-type electrodes on the LED region and an LED region, respectively.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: April 12, 2016
    Assignee: ADVANCED OPTOELECTRONIC TECHNOLOGY, INC.
    Inventors: Ching-Hsueh Chiu, Ya-Wen Lin, Po-Min Tu, Shih-Cheng Huang
  • Publication number: 20160093767
    Abstract: A light emitting diode includes a base and a semiconductor structure mounted on the base. The base includes a substrate that has a first surface and a second surface located opposite to the first surface. The first surface of the substrate forms a microstructure. The bottom of the microstructure covers the first surface. The microstructure is a plurality of mental portion bended continuously and includes a plurality of protruding structures. A top surface of each protruding structure is a flat plate. A method for manufacturing the light emitting diode is also provided.
    Type: Application
    Filed: July 31, 2015
    Publication date: March 31, 2016
    Inventors: CHING-HSUEH CHIU, YA-WEN LIN, PO-MIN TU, SHIH-CHENG HUANG
  • Publication number: 20160087151
    Abstract: An LED die includes a substrate, a pre-growth layer, a first insulating layer and a light emitting structure. The pre-growth layer, the first insulating layer and the light emitting structure are formed on the structure that order. The substrate includes a first electrode, a second electrode and an insulating part. The insulating part is formed between the first electrode and the second electrode. The LED die further includes a second insulating layer and a metal layer which are formed around the pre-growth layer. The present disclosure includes a method for manufacturing the LED die.
    Type: Application
    Filed: September 14, 2015
    Publication date: March 24, 2016
    Inventors: CHING-HSUEH CHIU, YA-WEN LIN, PO-MIN TU, SHIH-CHENG HUANG
  • Publication number: 20160079469
    Abstract: A light emitting diode (LED) chip includes a first semiconductor layer, a first light emitting layer formed on the first semiconductor layer, a second light emitting layer formed on the first light emitting layer, and a second semiconductor layer formed on the second light emitting layer. The first light emitting layer emits light having a first color. The second light emitting layer emits light having a second color different from the first color.
    Type: Application
    Filed: June 11, 2015
    Publication date: March 17, 2016
    Inventors: CHING-HSUEH CHIU, YA-WEN LIN, PO-MIN TU, SHIH-CHENG HUANG
  • Patent number: 9287451
    Abstract: An LED die includes a substrate, a first buffer layer, a second buffer layer, a plurality of nanospheres, a first semiconductor layer, an active layer and a second semiconductor layer. The first buffer layer, the second buffer layer, the first semiconductor layer, the active layer and the second semiconductor layer are formed successively on the substrate. The substrate has a plurality of protrusions on a surface thereof. The nanospheres are located on the protrusions and covered by the second buffer layer and located in the second buffer layer. The present disclosure also provides a method of manufacturing an LED die.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: March 15, 2016
    Assignee: ADVANCED OPTOELECTRONIC TECHNOLOGY, INC.
    Inventors: Ching-Hsueh Chiu, Ya-Wen Lin, Po-Min Tu, Shih-Cheng Huang
  • Publication number: 20160064613
    Abstract: A light emitting diode includes a first electrode, a second electrode and an epitaxial structure. The epitaxial structure is arranged on the first electrode, and electrically connects with the first electrode and the second electrode. The second electrode surrounds periphery of the epitaxial structure to reflect light from the epitaxial structure to emit out from the top of the epitaxial structure. This disclosure also relates to a method for manufacturing the light emitting diode. The light emitting diode and the method help solve the problem of low light efficiency of the light emitting diode.
    Type: Application
    Filed: August 11, 2015
    Publication date: March 3, 2016
    Inventors: CHING-HSUEH CHIU, CHIA-HUNG HUANG, YA-WEN LIN, PO-MIN TU, SHIH-CHENG HUANG
  • Publication number: 20160064606
    Abstract: An epitaxial substrate for growing a lighting emitting structure of a light emitting diode, includes a transparent base, a first buffer layer and a second buffer layer formed on the transparent base. The transparent base includes a first surface and a second surface opposite to the first surface. Plural protrusions are formed on the first surface of the transparent base. Each first buffer layer is formed on the outer surfaces of the plural protrusions. The second buffer layer fills in the recesses defined between two adjacent protrusions, and covers the first buffer layer. The refractive index of the first buffer layer is larger than that of the transparent base, and is less than that of the second buffer layer. This disclosure also relates a method for manufacturing the epitaxial substrate and a light emitting diode having the same.
    Type: Application
    Filed: August 26, 2015
    Publication date: March 3, 2016
    Inventors: CHING-HSUEH CHIU, YA-WEN LIN, PO-MIN TU, SHIH-CHENG HUANG
  • Publication number: 20160012781
    Abstract: A display device including a first common electrode, an active device array substrate, a display medium layer and a power system is provided. The active device array substrate includes a plurality of scan lines, a plurality of data lines, a plurality of transistors, a plurality of pixel electrodes and a second common electrode. Each of the transistors is electrically connected to one scan line and one data line, and the pixel electrodes are electrically connected to the transistors, respectively. The second common electrode and the pixel electrodes form a plurality of storage capacitors. The display medium layer is disposed between the first common electrode and the active device array substrate. The power system is electrically connected to the first common electrode and the second common electrode through two separated conductive routes, respectively. A reset method of a display device is also provided.
    Type: Application
    Filed: March 16, 2015
    Publication date: January 14, 2016
    Inventors: Ya-Wen Lin, Yi-Ming Wu, Pei-Lin Huang
  • Patent number: 9219190
    Abstract: A single photon source die includes a first semiconductor layer, a plurality of columnar structures formed on the first semiconductor layer, a second semiconductor layer formed on the columnar structures. Each columnar structure includes a bottom layer, a single photon point layer and a connecting layer. The single photon point layer includes a plurality of single photon points.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: December 22, 2015
    Assignee: ADVANCED OPTOELECTRONIC TECHNOLOGY, INC.
    Inventors: Ching-Hsueh Chiu, Ya-Wen Lin, Po-Min Tu, Shih-Cheng Huang
  • Publication number: 20150311413
    Abstract: A flip-chip light emitting diode, including a substrate, an N-type semiconductor layer, a light emitting layer and a P-type semiconductor layer series mounted along a height direction of the flip-chip light emitting diode. A P electrode is formed on the P-type semiconductor layer and an N electrode is formed on the N-type semiconductor. A top surface of the substrate is away from the light emitting layer. A plurality of micron main portions is formed on the top surface. An outer surface of each main body has a plurality of nanometer protrusions. A method for manufacturing the flip chip light emitting diode is also provided.
    Type: Application
    Filed: April 21, 2015
    Publication date: October 29, 2015
    Inventors: CHING-HSUEH CHIU, YA-WEN LIN, PO-MIN TU, SHIH-CHENG HUANG
  • Publication number: 20150287763
    Abstract: A pixel array includes a substrate and color filter patterns. The substrate has pixel areas. Each of the pixel areas has a first sub-pixel region, a second sub-pixel region, a third sub-pixel region and a fourth sub-pixel region. The first, the second, the third and the fourth sub-pixel regions are arranged sequentially in the clockwise direction. The color filter patterns are disposed on the pixel areas of the substrate and located in the first, the second, the third and the fourth sub-pixel regions. The color filter patterns located in the first, the second, the third and the fourth sub-pixel regions of each of the pixel areas respectively have different colors. The color filter patterns respectively disposed in four adjacent pixel areas and located in the first, the second, the third and the fourth sub-pixel regions adjacent to each other and arranged in the clockwise direction have the same color.
    Type: Application
    Filed: January 14, 2015
    Publication date: October 8, 2015
    Inventors: Pei-Lin Huang, Po-Yuan Lo, Yu-Nan Pao, Ya-Wen Lin
  • Patent number: 9130087
    Abstract: A light emitting diode includes a substrate, an un-doped GaN layer, a plurality of carbon nanotubes, an N-type GaN layer, an active layer formed on the N-type GaN layer, and a P-type GaN layer formed on the active layer. The substrate includes a first surface and a second surface opposite and parallel to the first surface. A plurality of convexes is formed on the first surface of the substrate. The un-doped GaN layer is formed on the first surface of the substrate. The plurality of carbon nanotubes is formed on an upper surface of the un-doped GaN layer. The plurality of carbon nanotubes is spaced from each other to expose a portion of the upper surface of the un-doped GaN layer. The N-type GaN layer is formed on the exposed portion of the upper surface of the un-doped GaN layer and covering the carbon nanotubes therein.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: September 8, 2015
    Assignee: ADVANCED OPTOELECTRONIC TECHNOLOGY, INC.
    Inventors: Ya-Wen Lin, Ching-Hsueh Chiu, Po-Min Tu, Shih-Cheng Huang