Patents by Inventor Yan You

Yan You has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210114034
    Abstract: A microfluidic device includes first and second substrate structures. The first substrate structure has a first substrate surface configured to receive one or more droplets. A plurality of electrodes configured to apply an electric field to the droplets. The second substrate structure has a second substrate surface facing the first substrate surface and spaced apart from the first substrate surface to form a fluid channel. The microfluidic device has a first heating element adjacent to the first substrate structure and disposed on an opposite side of the first substrate surface, and a second heating element adjacent to the second substrate structure and disposed on an opposite side of the second substrate surface. The microfluidic device further includes one or more temperature sensors disposed adjacent to the fluid channel between the first substrate structure and the second substrate structure.
    Type: Application
    Filed: August 27, 2020
    Publication date: April 22, 2021
    Inventors: Yan-You Lin, Jian Gong, Frank Zhong
  • Publication number: 20210069701
    Abstract: Embodiments of the disclosure include methods and apparatuses for separating beads from a droplet main body on a microfluidics actuator by applying a magnetic field to a droplet disposed at a first location, the droplet including one or more magnetically responsive beads; and moving the magnetic field to separate the one or more magnetically responsive beads from a main body of the droplet. Embodiments also include methods and apparatuses for introducing one or more beads into a droplet main body by applying a magnetic field to one or more magnetically responsive beads and moving the magnetic field to introduce the one or more magnetically responsive beads into a droplet disposed on a first location, wherein the droplet includes a fluid.
    Type: Application
    Filed: September 9, 2020
    Publication date: March 11, 2021
    Inventors: Jian Gong, Yan-You Lin, Sz-Chin Lin, Cheng Frank Zhong
  • Patent number: 10900076
    Abstract: Embodiments provided herewith are directed to self-assembled methods of preparing a patterned surface for sequencing applications including, for example, a patterned flow cell or a patterned surface for digital fluidic devices. The methods utilize photolithography to create a patterned surface with a plurality of microscale or nanoscale contours, separated by hydrophobic interstitial regions, without the need of oxygen plasma treatment during the photolithography process. In addition, the methods avoid the use of any chemical or mechanical polishing steps after the deposition of a gel material to the contours.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: January 26, 2021
    Assignee: Illumina, Inc.
    Inventors: Yir-Shyuan Wu, Yan-You Lin, M. Shane Bowen, Cyril Delattre, Fabien Abeille, Tarun Khurana, Arnaud Rival, Poorya Sabounchi, Dajun Yuan, Maria Candelaria Rogert Bacigalupo
  • Publication number: 20210013025
    Abstract: A method for forming sequencing flow cells can include providing a semiconductor wafer covered with a dielectric layer, and forming a patterned layer on the dielectric layer. The patterned layer has a differential surface that includes alternating first surface regions and second surface regions. The method can also include attaching a cover wafer to the semiconductor wafer to form a composite wafer structure including a plurality of flow cells. The composite wafer structure can then be singulated to form a plurality of dies. Each die forms a sequencing flow cell. The sequencing flow cell can include a flow channel between a portion of the patterned layer and a portion of the cover wafer, an inlet, and an outlet. Further, the method can include functionalizing the sequencing flow cell to create differential surfaces.
    Type: Application
    Filed: August 12, 2020
    Publication date: January 14, 2021
    Inventors: Shifeng Li, Jian Gong, Yan-You Lin, Cheng Frank Zhong
  • Patent number: 10892121
    Abstract: A light-emitting keyswitch includes a board, a lifting mechanism and a cap structure. The cap structure is assembled with the lifting mechanism to be movable upward and downward relative to the board and includes a cap and a light-emitting layer. The light-emitting layer includes first and second pad layers disposed on a lateral contour surface of the cap and spaced from each other, a lower electrode layer, a dielectric layer, an electroluminescent layer, an upper electrode layer and a transparent pattern layer stacked on a top surface of the cap, and an external trace structure. The lower and upper electrode layers are connected to the first and second pad layers respectively. The external trace structure is connected to the first and second pad layers for transmitting power to the upper and lower electrode layers, so as to drive the electroluminescent layer to emit light to the transparent pattern layer.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: January 12, 2021
    Assignee: DARFON ELECTRONICS CORP.
    Inventors: Wei-Yan You, Tsai-Jung Hu
  • Patent number: 10784103
    Abstract: A method for forming sequencing flow cells can include providing a semiconductor wafer covered with a dielectric layer, and forming a patterned layer on the dielectric layer. The patterned layer has a differential surface that includes alternating first surface regions and second surface regions. The method can also include attaching a cover wafer to the semiconductor wafer to form a composite wafer structure including a plurality of flow cells. The composite wafer structure can then be singulated to form a plurality of dies. Each die forms a sequencing flow cell. The sequencing flow cell can include a flow channel between a portion of the patterned layer and a portion of the cover wafer, an inlet, and an outlet. Further, the method can include functionalizing the sequencing flow cell to create differential surfaces.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: September 22, 2020
    Assignee: MGI TECH CO., LTD.
    Inventors: Shifeng Li, Jian Gong, Yan-You Lin, Cheng Frank Zhong
  • Publication number: 20200294739
    Abstract: A light-emitting keyswitch includes a board, a lifting mechanism and a cap structure. The cap structure is assembled with the lifting mechanism to be movable upward and downward relative to the board and includes a cap and a light-emitting layer. The light-emitting layer includes first and second pad layers disposed on a lateral contour surface of the cap and spaced from each other, a lower electrode layer, a dielectric layer, an electroluminescent layer, an upper electrode layer and a transparent pattern layer stacked on a top surface of the cap, and an external trace structure. The lower and upper electrode layers are connected to the first and second pad layers respectively. The external trace structure is connected to the first and second pad layers for transmitting power to the upper and lower electrode layers, so as to drive the electroluminescent layer to emit light to the transparent pattern layer.
    Type: Application
    Filed: February 20, 2020
    Publication date: September 17, 2020
    Inventors: Wei-Yan You, Tsai-Jung Hu
  • Patent number: 10767219
    Abstract: The disclosed embodiments concern microfluidic cartridges for detecting biological reactions. In some embodiments, the microfluidic cartridges are configured to perform sequencing operations on a nucleic acid sample. In one aspect, a microfluidic cartridge includes a stack of fluidics layers defining channels and valves for processing the nucleic acid sample to be sequenced, and a solid state CMOS biosensor integrated in the stack. The biosensor has an active area configured to detect signals of biological reactions, wherein substantially all of the active area is available for reagent delivery and illumination during operation. In another aspect, a microfluidic cartridge includes: (a) a flow cell including a reaction site area encompassing one or more reaction sites; (b) fluidics channels for delivering reactants to and/or removing reactants from the reaction site area; (c) a biosensor having an active area configured to detect signals of biological reactions in the reaction site area.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: September 8, 2020
    Assignee: ILLUMINA, INC.
    Inventors: Poorya Sabounchi, Behnam Javanmardi, Tarun Khurana, Philip Paik, Yan-You Lin
  • Publication number: 20200216895
    Abstract: Implementations of a method for seeding sequence libraries on a surface of a sequencing flow cell that allow for spatial segregation of the libraries on the surface are provided. The spatial segregation can be used to index sequence reads from individual sequencing libraries to increase efficiency of subsequent data analysis. In some examples, hydrogel beads containing encapsulated sequencing libraries are captured on a sequencing flow cell and degraded in the presence of a liquid diffusion barrier to allow for the spatial segregation and seeding of the sequencing libraries on the surface of the flow cell. Additionally, examples of systems, methods and compositions are provided relating to flow cell devices configured for nucleic acid library preparation and single cell sequencing. Some examples include flow cell devices having a hydrogel with genetic material disposed therein, and which is retained within the hydrogel during nucleic acid processing.
    Type: Application
    Filed: July 31, 2018
    Publication date: July 9, 2020
    Inventors: Tarun Kumar Khurana, Yir-Shyuan Wu, Xi-Jun Chen, Filiz Gorpe-Yasar, Yan-You Lin, Victoria Popic, Erich B. Jaeger, Mostafa Ronaghi
  • Publication number: 20190360041
    Abstract: Embodiments provided herewith are directed to self-assembled methods of preparing a patterned surface for sequencing applications including, for example, a patterned flow cell or a patterned surface for digital fluidic devices. The methods utilize photolithography to create a patterned surface with a plurality of microscale or nanoscale contours, separated by hydrophobic interstitial regions, without the need of oxygen plasma treatment during the photolithography process. In addition, the methods avoid the use of any chemical or mechanical polishing steps after the deposition of a gel material to the contours.
    Type: Application
    Filed: May 17, 2017
    Publication date: November 28, 2019
    Inventors: Yir-Shyuan Wu, Yan-You Lin, M. Shane Bowen, Cyril Delattre, Fabien Abeille, Tarun Khurana, Arnaud Rival, Poorya Sabounchi, Dajun Yuan, Maria Candelaria Rogert Bacigalupo
  • Publication number: 20190264276
    Abstract: A stack of fluidics layers of a microfluidic cartridge for sequencing nucleic acid molecules includes a sequencing chamber layer having a sequencing chamber area configured for carrying out clustering and sequencing reactions, and a sequencing chamber bottom layer disposed under the sequencing chamber layer. The sequencing chamber bottom layer has an opening configured to hold an image sensor with the image sensor having an active area disposed under the sequencing chamber area. The sequencing chamber area spans substantially all of the active area of the image sensor. The stack of fluidics layers includes a flexible printed circuit board (PCB) layer under the sequencing chamber bottom layer, and a fluidics channels layer disposed under the flexible PCB layer. The fluidics channels layer includes fluidics channels that are configured to deliver reactants to the sequencing chamber area. The fluidics channels do not substantially overlap with the active area of the image sensor.
    Type: Application
    Filed: May 7, 2019
    Publication date: August 29, 2019
    Inventors: Poorya Sabounchi, Behnam Javanmardi, Tarun Khurana, Philip Paik, Yan-You Lin
  • Publication number: 20190088463
    Abstract: A method for forming sequencing flow cells can include providing a semiconductor wafer covered with a dielectric layer, and forming a patterned layer on the dielectric layer. The patterned layer has a differential surface that includes alternating first surface regions and second surface regions. The method can also include attaching a cover wafer to the semiconductor wafer to form a composite wafer structure including a plurality of flow cells. The composite wafer structure can then be singulated to form a plurality of dies. Each die forms a sequencing flow cell. The sequencing flow cell can include a flow channel between a portion of the patterned layer and a portion of the cover wafer, an inlet, and an outlet. Further, the method can include functionalizing the sequencing flow cell to create differential surfaces.
    Type: Application
    Filed: September 11, 2018
    Publication date: March 21, 2019
    Applicant: Complete Genomics, Inc.
    Inventors: Shifeng Li, Jian Gong, Yan-You Lin, Cheng Frank Zhong
  • Publication number: 20180250672
    Abstract: In accordance with embodiments herein a method for capturing cells of interest in a digital microfluidic system is provided, comprising utilizing a droplet actuator to transport a sample droplet to a microwell device. The microwell device includes a substrate having a plurality of microwells that open onto a droplet operations surface of the microwell device. The sample droplet includes cells of interest that enter the microwells. The method introduces capture beads to the microwells, and the capture elements are immobilized on the capture beads. The method utilizes the droplet actuator to transport a cell lysis reagent droplet to the microwell device. Portions of the cell lysis reagent droplet enter the microwells and, during an incubation period, cause the cells of interest to release analyte that is captured by the capture elements on the capture beads.
    Type: Application
    Filed: November 30, 2016
    Publication date: September 6, 2018
    Applicant: Illumina, Inc.
    Inventors: Arash Jamshidi, Yan-you Lin, Farnaz Absalan, Sarah Stuart, Gordon Cann, Yir-Shyuan Wu, Tarun Khurana, Jeffrey S Fisher
  • Publication number: 20170016060
    Abstract: The disclosed embodiments concern microfluidic cartridges for detecting biological reactions. In some embodiments, the microfluidic cartridges are configured to perform sequencing operations on a nucleic acid sample. In one aspect, a microfluidic cartridge includes a stack of fluidics layers defining channels and valves for processing the nucleic acid sample to be sequenced, and a solid state CMOS biosensor integrated in the stack. The biosensor has an active area configured to detect signals of biological reactions, wherein substantially all of the active area is available for reagent delivery and illumination during operation. In another aspect, a microfluidic cartridge includes: (a) a flow cell including a reaction site area encompassing one or more reaction sites; (b) fluidics channels for delivering reactants to and/or removing reactants from the reaction site area; (c) a biosensor having an active area configured to detect signals of biological reactions in the reaction site area.
    Type: Application
    Filed: March 11, 2015
    Publication date: January 19, 2017
    Inventors: Poorya Sabounchi, Behnam Javanmardi, Tarun Khurana, Philip Paik, Yan-You Lin
  • Publication number: 20160199832
    Abstract: Provided herein is a droplet actuator including (a) first and second substrates separated by a droplet-operations gap, the first and second substrates including respective hydrophobic surfaces that face the droplet-operations gap; (b) a plurality of electrodes coupled to at least one of the first substrate and the second substrate, the electrodes arranged along the droplet-operations gap to control movement of a droplet along the hydrophobic surfaces within the droplet-operations gap; and (c) a hydrophilic or variegated-hydrophilic surface exposed to the droplet-operations gap, the hydrophilic or variegated-hydrophilic surface being positioned to contact the droplet when the droplet is at a select position within the droplet-operations gap.
    Type: Application
    Filed: August 29, 2014
    Publication date: July 14, 2016
    Applicant: Advanced Liquid Logic France SAS
    Inventors: Arash Jamshidi, Yan-You Lin, Alex Aravanis, Cyril Delattre, Arnaud Rival, Jennifer Foley, Poorya Sabounchi, Tarun Khurana, Majid Babazadeh, Hamed Amini, Bala Murali Venkatesan, M. Shane Bowen, Steven M. Barnard, Maria Candelaria Rogert Bacigalupo, Dietrich Dehlinger