Patents by Inventor YANG MING

YANG MING has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200289077
    Abstract: An imaging method (100) includes: acquiring first training images of one or more imaging subjects using a first image acquisition device (12); acquiring second training images of the same one or more imaging subjects as the first training images using a second image acquisition device (14) of the same imaging modality as the first imaging device; and training a neural network (NN) (16) to transform the first training images into transformed first training images having a minimized value of a difference metric comparing the transformed first training images and the second training images.
    Type: Application
    Filed: October 16, 2018
    Publication date: September 17, 2020
    Inventors: Chuanyong BAI, Yang-Ming ZHU, Andriy ANDREYEV, Bin ZHANG, Chi-Hua TUNG
  • Publication number: 20200258271
    Abstract: When performing nuclear medicine image reconstruction, lesion proxies (208) are introduced by a clinician and merged with real acquired scan data outside or inside the patient in the patient image. By monitoring the image attributes of the lesion proxies during reconstruction and processing, reconstruction and processing parameters can be dynamically adapted or adjusted in order to optimize image quality and quantitation to improve delivery of precise, personalized medical treatment.
    Type: Application
    Filed: November 8, 2016
    Publication date: August 13, 2020
    Inventor: Yang-Ming ZHU
  • Publication number: 20200175732
    Abstract: A non-transitory storage medium stores instructions readable and executable by an imaging workstation (14) including at least one electronic processor (16) operatively connected with a display device (20) to perform an image reconstruction method (100). The method includes: reconstructing imaging data acquired by an image acquisition device (12) using an iterative image reconstruction algorithm to generate at least one reconstructed image (22); delineating one or more contours (26) of the at least one reconstructed image to determine a region of interest (ROI) (24) of the at least one reconstructed image; computing at least one quality metric value (30) of the ROI, the at least one quality metric value including at least one of a convergence quality metric, a partial volume effect (PVE) quality metric, and a local count quality metric; and displaying, on the display device, the at least one quality metric value and the at least one reconstructed image showing the ROI.
    Type: Application
    Filed: June 1, 2018
    Publication date: June 4, 2020
    Inventors: Andriy ANDREYEV, Chuanyong BAI, Yang-Ming ZHU, Piotr Jan MANIAWSKI
  • Publication number: 20200168699
    Abstract: A semiconductor structure and a forming method thereof are disclosed. The forming method includes: providing a base; forming a first electrode layer on the base; forming a capacitance dielectric layer on a top and a sidewall of the first electrode layer; and forming a second electrode layer conformally covering the capacitance dielectric layer. Compared with a solution in which the capacitance dielectric layer only covers the top of the first electrode layer, in the present disclosure, an effective area between the second electrode layer and the first electrode layer is increased, the second electrode layer, the first electrode layer, and the capacitance dielectric layer located on the top of the first electrode layer construct one capacitance, and the second electrode layer, the first electrode layer, and the capacitance dielectric layer located on the sidewall of the first electrode layer construct other four capacitances. That is, the formed capacitor structure includes five parallel capacitances.
    Type: Application
    Filed: August 9, 2019
    Publication date: May 28, 2020
    Applicants: Semiconductor Manufacturing International (Beijing) Corporation, Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Hu LIANFENG, Hu YOUCUN, YANG MING, Bei DUOHUI, Ni Baibing LING
  • Publication number: 20200009653
    Abstract: A manufacturing method of a graphene metal composite material includes the steps of providing metal powder including metal particles, graphene powder including graphene pieces and binder including wax material, wherein each graphene piece includes graphene molecules connected with each other and including six carbon atoms annually connected, and one of the carbon atom of each graphene molecule is bonded with a functional group by an SP3 bond; mixing the powders and the binder into a powder material, wherein the SP3 bond is heated and broken by friction, and the graphene molecules are connected with each other via the broken SP3 bond to wrap the respective metal particles; melting and molding the powder material to form a green part; removing the binder from the green part to form a brown part; and sintering the brown part to form a metal main part embedded a three-dimensional mash formed by the graphene molecules.
    Type: Application
    Filed: July 4, 2019
    Publication date: January 9, 2020
    Inventors: Wei-Lin TSENG, Yang-Ming SHIH, Tzu-Yao LIN
  • Publication number: 20190287275
    Abstract: An imaging device (1) includes a positron emission tomography (PET) scanner (10) including radiation detectors (12) and coincidence circuitry for detecting electron-positron annihilation events as 511 keV gamma ray pairs defining lines of response (LORs) with each event having a detection time difference At between the 511 keV gamma rays of the pair. At least one processor (30) is programmed to reconstruct a dataset comprising detected electron-positron annihilation events acquired for a region of interest by the PET scanner to form a reconstructed PET image wherein the reconstruction includes TOF localization of the events along respective LORs using a TOF kernel having a location parameter dependent on At and a TOF kernel width or shape that varies over the region of interest. A display device (34) is configured to display the reconstructed PET image.
    Type: Application
    Filed: July 20, 2017
    Publication date: September 19, 2019
    Applicant: Koninklijke Philips N.V.
    Inventors: Yang-Ming ZHU, Andriy ANDREYEV, Steven Michael COCHOFF
  • Publication number: 20190197674
    Abstract: Image processing performed by a computer (22) includes iterative image reconstruction or refinement (26, 56) that produces a series of update images ending in an iteratively reconstructed or refined image. A difference image (34, 64) is computed between a first update image (30, 60) and a second update image (32, 62) of the series. The difference image is converted to a feature image (40) and is used in the iterative processing (26, 56) or in post-processing (44) performed on the iteratively reconstructed or refined images or images from different reconstruction or refinement techniques. In another embodiment, first and second image reconstructions (81, 83) are performed to generate respective first and second reconstructed images (80, 82). A difference image (84) is computed between two images each selected from the group: the first reconstructed image, an update image of the first reconstruction, the second reconstructed image, and an update image of the second reconstruction.
    Type: Application
    Filed: August 22, 2017
    Publication date: June 27, 2019
    Inventors: Chuanyong BAI, Andriy ANDREYEV, Bin ZHANG, Yang-Ming ZHU, Xiyun SONG, Jinghan YE, Zhiqiang HU
  • Publication number: 20190139271
    Abstract: A diagnostic imaging system retrieves data (206) from a plurality of accessible data sources, the accessible data sources storing data including physiological data describing a subject to be imaged, a nature of a requested diagnostic image, image preferences of a clinician who requested the diagnostic image, and previously reconstructed images of the requested nature of the subject and/or other subjects, reconstruction parameters and/or sub-routines used to reconstruct the previously reconstructed images. The system analyzes (6, 12) the retrieved data to automatically generate reconstruction parameters and/or sub-steps specific to the nature of the requested diagnostic image, the subject, and the clinician image preferences. The system controls a display device (10, 216) to display the generated reconstruction parameters and/or sub-routines to the user for a user selection.
    Type: Application
    Filed: January 3, 2019
    Publication date: May 9, 2019
    Inventors: Chi-Hua TUNG, Shekhar DWIVEDI, Yang-Ming ZHU, John Patrick COLLINS
  • Patent number: 10275906
    Abstract: A diagnostic imaging system retrieves data (206) from a plurality of accessible data sources, the accessible data sources storing data including physiological data describing a subject to be imaged, a nature of a requested diagnostic image, image preferences of a clinician who requested the diagnostic image, and previously reconstructed images of the requested nature of the subject and/or other subjects, reconstruction parameters and/or sub-routines used to reconstruct the previously reconstructed images. The system analyzes (6, 12) the retrieved data to automatically generate reconstruction parameters and/or sub-steps specific to the nature of the requested diagnostic image, the subject, and the clinician image preferences. The system controls a display device (10, 216) to display the generated reconstruction parameters and/or sub-routines to the user for a user selection.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: April 30, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Chi-Hua Tung, Shekhar Dwivedi, Yang-Ming Zhu, John Patrick Collins
  • Publication number: 20180303449
    Abstract: In a multi-session imaging study, information from a previous imaging session is stored in a Binary Large Object (BLOB). Current emission imaging data are reconstructed into a non-attenuation corrected (NAC) current emission image. A spatial transform is generated aligning a previous NAC emission image from the BLOB to the current NAC emission image. A previous computed tomography (CT) image from the BLOB is warped using the spatial transform, and the current emission imaging data are reconstructed with attenuation correction using the warped CT image. Alternatively, low dose current emission imaging data and a current CT image are acquired, a spatial transform is generated aligning the previous CT image to the current CT image, a previous attenuation corrected (AC) emission image from the BLOB is warped using the spatial transform, and the current emission imaging data are reconstructed using the current CT image with the warped AC emission image as prior.
    Type: Application
    Filed: October 28, 2016
    Publication date: October 25, 2018
    Inventors: Yang-Ming ZHU, Chi-Hua TUNG
  • Patent number: 10096382
    Abstract: A medical imaging system (10) comprises one or more displays (66). A viewer device (86) generates an interactive user interface screen (80) on the display (66), which viewer device (86) enables a user to simultaneously inspect selected image data of multiple patients or multiple images.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: October 9, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Yang-Ming Zhu, Xiangyu Wu, Charles A. Nortmann, Ronald W. Sukalac, Steven M. Cochoff, L. Alan Love, Richard Cheng-Hsiu Chen, Chris A. Dauterman, Madhavi Ahuja, Dawn M. Maniawski
  • Publication number: 20180271391
    Abstract: A physiological detection system including an array sensor and a processing unit is provided. The array sensor is configured to output array PPG signals. The processing unit is configured to construct a 3D energy distribution according to the array PPG signals to accordingly identify different microcirculation states.
    Type: Application
    Filed: June 4, 2018
    Publication date: September 27, 2018
    Inventors: Chiung-Wen LIN, Wei-Ru HAN, Yang-Ming CHOU, Cheng-Nan TSAI, Ren-Hau GU, Chih-Yuan CHUANG
  • Publication number: 20180233427
    Abstract: A graphite heat sink includes a graphite heat conductive plate and a heat radiation layer. One side of the graphite heat conductive plate is used for absorbing heat from the heat source. The other side of the graphite heat conductive plate is covered by the heat radiation layer. Heat from the heat source is absorbed into the graphite heat conductive plate and then rapidly radiated from the heat radiation layer to dissipate.
    Type: Application
    Filed: January 4, 2018
    Publication date: August 16, 2018
    Inventors: Yang-Ming SHIH, Hung-Yun HSU
  • Publication number: 20180235074
    Abstract: A radiative cooling structure for a printed circuit includes a circuit board and a cooling structure. A printed circuit is disposed on the circuit board. The printed circuit includes a plurality of printed leads and a thermal conductive area. The printed leads are connected to the thermal conductive area. A cooling structure covers the thermal conductive area. The cooling structure covers the thermal conductive area, and the cooling structure incudes a thermal radiation layer. Heat generated by heat sources on the circuit board is transferred to the thermal conductive area via the printed circuit. The cooling structure radiates the heat into surrounding space by radiation.
    Type: Application
    Filed: January 4, 2018
    Publication date: August 16, 2018
    Inventors: Yang-Ming SHIH, Hung-Yun Hsu
  • Patent number: 10036817
    Abstract: Method and apparatus are disclosed for generating a scatter-corrected image from positron emission tomography (PET) or other radioemission imaging data (20) acquired of an object (12) in a field of view (14). A background portion (26B) of the PET imaging data is identified corresponding to a background region (14B) of the FOV that is outside of the object. An outside-FOV activity estimate (40) for at least one spatial region outside of the FOV and into which the object extends is adjusted (e.g. iterative or several randomly selected estimates) to optimize a simulated scatter distribution for the combination of the PET imaging data and the outside FOV activity estimate to match the background portion (26B) of the PET imaging data. The PET imaging data are reconstructed to generate a scatter-corrected PET image of the object in the FOV using the optimized simulated scatter distribution.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: July 31, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Andriy Andreyev, Yang-Ming Zhu, Jinghan Ye, Xiyun Song
  • Publication number: 20180120459
    Abstract: Method and apparatus are disclosed for generating a scatter-corrected image from positron emission tomography (PET) or other radioemission imaging data (20) acquired of an object (12) in a field of view (14). A background portion (26B) of the PET imaging data is identified corresponding to a background region (14B) of the FOV that is outside of the object. An outside-FOV activity estimate (40) for at least one spatial region outside of the FOV and into which the object extends is adjusted (e.g. iterative or several randomly selected estimates) to optimize a simulated scatter distribution for the combination of the PET imaging data and the outside FOV activity estimate to match the background portion (26B) of the PET imaging data. The PET imaging data are reconstructed to generate a scatter-corrected PET image of the object in the FOV using the optimized simulated scatter distribution.
    Type: Application
    Filed: April 25, 2016
    Publication date: May 3, 2018
    Inventors: Andriy ANDREYEV, Yang-Ming ZHU, Jinghan YE, Xiyun SONG
  • Publication number: 20170206680
    Abstract: A diagnostic imaging system retrieves data (206) from a plurality of accessible data sources, the accessible data sources storing data including physiological data describing a subject to be imaged, a nature of a requested diagnostic image, image preferences of a clinician who requested the diagnostic image, and previously reconstructed images of the requested nature of the subject and/or other subjects, reconstruction parameters and/or sub-routines used to reconstruct the previously reconstructed images. The system analyzes (6, 12) the retrieved data to automatically generate reconstruction parameters and/or sub-steps specific to the nature of the requested diagnostic image, the subject, and the clinician image preferences. The system controls a display device (10, 216) to display the generated reconstruction parameters and/or sub-routines to the user for a user selection.
    Type: Application
    Filed: July 9, 2015
    Publication date: July 20, 2017
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Chi-Hua TUNG, Shekhar DWIVEDI, Yang-Ming ZHU, John Patrick COLLINS
  • Patent number: 9409286
    Abstract: A screw removal tool may include a tool body, a driving unit and a tool tip, wherein the tool body has a hexagonal shaft, which is connected to a cylindrical pin at a driving end, and the cylindrical pin is connected to a block, and the pin and the block are arranged in an eccentric manner at the driving end; and wherein the driving unit has an eccentric connecting hole that mates with the cylindrical pin of the tool body and the driving unit can be rotated; wherein the tool tip has an eccentric hole that mates with the block, and pressure is applied on the block to prevent the tool tip from falling out.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: August 9, 2016
    Inventor: Yang-Ming Hsu
  • Publication number: 20150343623
    Abstract: A screw removal tool may include a tool body, a driving unit and a tool tip, wherein the tool body has a hexagonal shaft, which is connected to a cylindrical pin at a driving end, and the cylindrical pin is connected to a block, and the pin and the block are arranged in an eccentric manner at the driving end; and wherein the driving unit has an eccentric connecting hole that mates with the cylindrical pin of the tool body and the driving unit can be rotated; wherein the tool tip has an eccentric hole that mates with the block, and pressure is applied on the block to prevent the tool tip from falling out.
    Type: Application
    Filed: June 2, 2014
    Publication date: December 3, 2015
    Inventor: Yang-Ming Hsu
  • Patent number: D741793
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: October 27, 2015
    Assignee: REC Solar Pte. Ltd.
    Inventor: Raymond Yang Ming Lim