Patents by Inventor Yang Xiao

Yang Xiao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10429274
    Abstract: A vertical high-speed testing device for a spiral seal of a cone bit bearing is provided. The device includes an upper fixed plate, a liquid cylinder, a cone, a spiral sleeve, a shaft and a lower fixed plate. The spiral sleeve is in threaded connection to the cone. Both the cone and the spiral sleeve are sheathed on the shaft. Sealing threads are provided on an inner surface of the spiral sleeve, and there is a clearance between the sealing threads and the shaft. By the testing device, a spiral seal structure for a cone bit bearing is simulated, and the cone drives the spiral sleeve to rotate; and the sand draining performance of the spiral seal is tested by measuring the time required to drain sand-containing medium.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: October 1, 2019
    Inventors: Yi Zhou, Yueming Zheng, Yang Xiao, Xia Wang, Tong Xu, Yuxing Huang, Yi Tang, Bin Tan
  • Patent number: 10431662
    Abstract: The disclosure relates to a thin film transistor and a method for making the same. The thin film transistor includes a substrate; a semiconductor layer on the substrate, wherein the semiconductor layer includes nano-scaled semiconductor materials; a source and a drain, wherein the source and the drain are on the substrate, spaced apart from each other, and electrically connected to the semiconductor layer; a dielectric layer on the semiconductor layer, wherein the dielectric layer includes a first sub-dielectric layer and a second sub-dielectric layer stacked on one another, and the first sub-dielectric layer is a first oxide dielectric layer grown by magnetron sputtering; and a gate in direct contact with the first sub-dielectric layer. The thin film transistor almost has no current hysteresis.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: October 1, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yu-Jia Huo, Yu-Dan Zhao, Xiao-Yang Xiao, Ying-Cheng Wang, Tian-Fu Zhang, Yuan-Hao Jin, Qun-Qing Li, Shou-Shan Fan
  • Patent number: 10424479
    Abstract: A method of making nano-scaled channel, the method including: locating a first photoresist layer, a nanowire structure, and a second photoresist layer on a surface of a substrate, and the nanowire structure being sandwiched between the first photoresist layer and the second photoresist layer, wherein the nanowire structure comprises an nanowire; forming an opening in the first photoresist layer and the second photoresist layer to expose a portion of the surface of the substrate to form an exposed surface, wherein a part of the nanowire is exposed and suspended in the opening, and both ends of the nanowire are sandwiched between the first photoresist layer and the second photoresist layer; and depositing a thin film layer on the exposed surface of the substrate using the a nanowire as a mask, wherein the thin film layer defines a nano-scaled channel corresponding to the at least one nanowire.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: September 24, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Mo Chen, Qun-Qing Li, Li-Hui Zhang, Xiao-Yang Xiao, Jin Zhang, Shou-Shan Fan
  • Patent number: 10424480
    Abstract: A method of making a thin film transistor, the method including: providing an insulating layer on a semiconductor substrate, forming a semiconductor layer on the insulating layer; locating a first photoresist layer, a nanowire structure, a second photoresist layer on the semiconductor layer, wherein the nanowire structure comprises a nanowire; forming an opening in the first photoresist layer and the second photoresist layer to form an exposed surface, wherein a part of the nanowire is exposed in the opening; depositing a conductive film layer on the exposed surface of the semiconductor layer, wherein the conductive film layer defines a nano-scaled channel corresponding to the nanowire, and the conductive film layer is divided into two regions by the nano-scaled channel, one region is used as a source electrode, and the other region is used as a drain electrode; forming a gate electrode on the semiconductor substrate.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: September 24, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Mo Chen, Qun-Qing Li, Li-Hui Zhang, Xiao-Yang Xiao, Jin Zhang, Shou-Shan Fan
  • Patent number: 10393615
    Abstract: A horizontal high-speed testing device for a spiral seal of a cone bit bearing is provided. The device comprises a shaft, a spiral sleeve and a cone. The spiral sleeve is in threaded connection to the cone. Sealing threads are provided on an inner diameter of the spiral sleeve. Both the spiral sleeve and the cone are sheathed on the shaft. By the testing device of the present invention, a spiral seal structure for a cone bit bearing is simulated, and the cone drives the spiral sleeve to rotate; the sand draining performance of the spiral seal can be tested in two ways, i.e., by measuring the time required to drain the sand-containing liquid and by measuring the weight of drained sand, so that the smooth production and application of spiral seal products can be assured.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: August 27, 2019
    Inventors: Yi Zhou, Yueming Zheng, Yang Xiao, Tong Xu, Xia Wang, Yi Tang, Song Peng, Yuxing Huang, Bin Tan
  • Patent number: 10392333
    Abstract: A method for producing formaldehyde from methanol. The method includes the steps of packing a catalyst comprising platinum, bismuth and a support material into a reactor, introducing a reactant mixture containing methanol into the reactor such that the reactant mixture containing methanol is in close contact with the catalyst, and heating the reactant mixture containing methanol to a temperature for a period of time.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: August 27, 2019
    Assignee: Purdue Research Foundation
    Inventors: Arvind Varma, Yang Xiao
  • Patent number: 10381585
    Abstract: A thin film transistor includes a gate electrode, a insulating medium layer and at least one Schottky diode unit. The at least one Schottky diode unit is located on a surface of the insulating medium layer. The at least one Schottky diode unit includes a first electrode, a semiconductor structure and a second electrode. The semiconductor structure comprising a first end and a second end. The first end is laid on the first electrode, the second end is located on the surface of the insulating medium layer. The semiconducting structure includes a carbon nanotube structure. The second electrode is located on the second end.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: August 13, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yu-Dan Zhao, Xiao-Yang Xiao, Ying-Cheng Wang, Yuan-Hao Jin, Tian-Fu Zhang, Qun-Qing Li
  • Publication number: 20190245068
    Abstract: A method of making a thin film transistor, the method includes: providing a semiconductor layer; arranging a first photoresist layer, a nanowire structure, a second photoresist layer on the semiconductor layer, wherein the nanowire structure includes a single nanowire; forming one opening in the first photoresist layer and the second photoresist layer to form an exposed surface, wherein a part of the nanowire is exposed and suspended in the opening; depositing a conductive film layer on the exposed surface using the nanowire structure as a mask, wherein the conductive film layer defines a nano-scaled channel, and the conductive film layer is divided into two regions, one region is used as a source electrode, and the other region is used as a drain electrode; forming an insulating layer on the semiconductor layer to cover the source electrode and the drain electrode, and locating a gate electrode on the insulating layer.
    Type: Application
    Filed: April 18, 2019
    Publication date: August 8, 2019
    Inventors: MO CHEN, QUN-QING LI, LI-HUI ZHANG, XIAO-YANG XIAO, JIN ZHANG, SHOU-SHAN FAN
  • Patent number: 10374180
    Abstract: A thin film transistor includes a gate, an insulating medium layer and a Schottky diode. The Schottky diode includes a first electrode, a second electrode and a semiconducting structure. The first electrode is located on the surface of the insulating medium layer and includes a first metal layer and a second metal layer. The second electrode is located on the surface of the insulating medium layer and includes a third metal layer and a fourth metal layer. The semiconductor structure includes a first end and a second end. The first end is sandwiched by the first metal layer and the second metal layer, the second end is sandwiched by the third metal layer and the fourth metal layer. The semiconductor structure includes a carbon nanotube structure.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: August 6, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yu-Dan Zhao, Xiao-Yang Xiao, Ying-Cheng Wang, Yuan-Hao Jin, Tian-Fu Zhang, Qun-Qing Li
  • Publication number: 20190212318
    Abstract: The present invention discloses a device for measuring adsorption/desorption of contaminants onto surface bed sediments and a method of using the device. The measurement device includes a sediment sample disc, a sample holder, a reaction cylinder, a liquid collection cylinder, and a liquid circulating member from inside to outside, the liquid circulating member consisting of rubber pipes and a peristaltic pump.
    Type: Application
    Filed: October 10, 2017
    Publication date: July 11, 2019
    Applicant: Hohai University
    Inventors: Hongwu TANG, Qingxia LI, Yang XIAO, Zhiwei LI, Saiyu YUAN
  • Patent number: 10347854
    Abstract: The disclosure relates to a logic circuit. The logic circuit includes two ambipolar thin film transistors. Each of the two ambipolar thin film transistors includes a substrate; a semiconductor layer located on the substrate and including nano-scaled semiconductor materials; a source and a drain, wherein the source and the drain are located on the substrate, spaced apart from each other, and electrically connected to the semiconductor layer; a dielectric layer located on the substrate and covering the semiconductor layer, wherein the dielectric layer includes a normal dielectric layer and an abnormal dielectric layer stacked on one another, and the abnormal dielectric layer is an oxide dielectric layer grown by magnetron sputtering; and a gate in direct contact with the abnormal dielectric layer. The two ambipolar thin film transistors share the same substrate, the same gate, and the same drain.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: July 9, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yu-Dan Zhao, Yu-Jia Huo, Xiao-Yang Xiao, Ying-Cheng Wang, Tian-Fu Zhang, Yuan-Hao Jin, Qun-Qing Li, Shou-Shan Fan
  • Publication number: 20190194106
    Abstract: A method for producing formaldehyde from methanol. The method includes the steps of packing a catalyst comprising platinum, bismuth and a support material into a reactor, introducing a reactant mixture containing methanol into the reactor such that the reactant mixture containing methanol is in close contact with the catalyst, and heating the reactant mixture containing methanol to a temperature for a period of time.
    Type: Application
    Filed: December 19, 2018
    Publication date: June 27, 2019
    Applicant: Purdue Research Foundation
    Inventors: Arvind Varma, Yang Xiao
  • Patent number: 10326089
    Abstract: The disclosure relates to a logic circuit. The logic circuit includes a n-type thin film transistor and a p-type thin film transistor. Each thin film transistor includes a substrate; a semiconductor layer including nano-scaled semiconductor materials; a source and a drain, wherein the source and the drain are spaced apart from each other, and electrically connected to the semiconductor layer; a dielectric layer covering the semiconductor layer, wherein the dielectric layer includes a normal dielectric layer and an abnormal dielectric layer stacked on one another, and the abnormal dielectric layer is an oxide dielectric layer grown by magnetron sputtering; and a gate in direct contact with the abnormal dielectric layer. The n-type thin film transistor and the p-type thin film transistor share the same substrate and the same gate.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: June 18, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yu-Dan Zhao, Yu-Jia Huo, Xiao-Yang Xiao, Ying-Cheng Wang, Tian-Fu Zhang, Yuan-Hao Jin, Qun-Qing Li, Shou-Shan Fan
  • Publication number: 20190179373
    Abstract: The present invention provides a hinge of a mobile terminal with a flexible screen. The outer side of the hinge supports the flexible screen. The hinge comprises a main support body, a first bracket and a second bracket rotatably connected to a rotating shaft of the hinge, a first support body and a second support body respectively slidably connected to the first bracket and the second bracket, and a synchronous control mechanism. An auxiliary support body is separately provided between the first support body and the main support body and between the second support body and the main support body. The auxiliary support body is correspondingly located at a bend portion of the hinge in a closed state. The hinge is further provided with a first guide structure rotating around the rotating shaft of the hinge together with the first bracket and a second guide structure rotating around the rotating shaft of the hinge together with the second bracket.
    Type: Application
    Filed: April 6, 2017
    Publication date: June 13, 2019
    Inventors: Guanlun CHENG, Yang XIAO, Mengyu SI
  • Publication number: 20190173670
    Abstract: The method provided in the embodiments of this application includes: obtaining, by a server, a first key (Ksm) shared with a gateway; receiving, by the server, an encrypted first random factor (Rand-M-Encry), a first data digest (Data-Hash), and encrypted first data (Data-Encry) that are sent by a terminal; decrypting, by the server, the Rand-M-Encry by using the Ksm, to obtain a second random factor (Rand-M?); performing, by the server, an operation on the Rand-M? and Kpsa-xi by using a second preset algorithm, to generate a third key (K?sx); decrypting, by the server, the Data-Encry by using the K?sx, to obtain second data (Data?); performing, by the server, an operation on the K?sx and the Data? based on a first preset algorithm to obtain a second data digest (Data-Hash?); and if the Data-Hash? is the same as the Data-Hash, determining, by the server, that authentication of the terminal succeeds.
    Type: Application
    Filed: January 24, 2019
    Publication date: June 6, 2019
    Inventors: Yang XIAO, Yan LIU
  • Patent number: 10312354
    Abstract: A method of making a thin film transistor, the method including: forming a gate insulating layer on a gate electrode; placing a semiconductor layer on the gate insulating layer; locating a first photoresist layer, a nanowire structure, a second photoresist layer on the semiconductor layer, the nanowire structure being sandwiched between the first photoresist layer and the second photoresist layer, wherein the nanowire structure comprises one nanowire; forming one opening in the first photoresist layer and the second photoresist layer to form an exposed surface, wherein a part of the nanowire is exposed in the opening; depositing a conductive film layer on the exposed surface of the semiconductor layer, wherein the conductive film layer defines a nano-scaled channel corresponding to the nanowire, the conductive film layer is divided into two regions, one region is used as a source electrode, the other region is used as a drain electrode.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: June 4, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Mo Chen, Qun-Qing Li, Li-Hui Zhang, Xiao-Yang Xiao, Jin Zhang, Shou-Shan Fan
  • Publication number: 20190153329
    Abstract: A method for producing hydrocarbons from glycerol. The method includes packing a catalyst comprising a noble metal and a support material into a reactor, introducing a reactant mixture containing glycerol into the reactor such that the reactant mixture containing methane is in close contact with the reactant mixture, and heating the reactant mixture containing glycerol to a temperature for a contact time.
    Type: Application
    Filed: October 3, 2018
    Publication date: May 23, 2019
    Applicant: Purdue Research Foundation
    Inventors: Arvind Varma, Yang Xiao
  • Publication number: 20190157467
    Abstract: A Schottky diode includes an insulating substrate and at least one Schottky diode unit. The at least one Schottky diode unit is located on a surface of the insulating substrate. The at least one Schottky diode unit includes a first electrode, a semiconductor structure and a second electrode. The semiconductor structure comprising a first end and a second end. The first end is laid on the first electrode; the second end is located on the surface of the insulating substrate. The semiconducting structure is nano-scale semiconductor structure. The second electrode is located on the second end.
    Type: Application
    Filed: January 4, 2019
    Publication date: May 23, 2019
    Inventors: YU-DAN ZHAO, XIAO-YANG XIAO, YING-CHENG WANG, YUAN-HAO JIN, TIAN-FU ZHANG, QUN-QING LI
  • Patent number: 10297696
    Abstract: A Schottky diode includes an insulating substrate and at least one Schottky diode unit. The at least one Schottky diode unit is located on a surface of the insulating substrate. The at least one Schottky diode unit includes a first electrode, a semiconductor structure and a second electrode. The semiconductor structure comprising a first end and a second end. The first end is laid on the first electrode, the second end is located on the surface of the insulating substrate. The semiconducting structure is nano-scale semiconductor structure. The second electrode is located on the second end.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: May 21, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yu-Dan Zhao, Xiao-Yang Xiao, Ying-Cheng Wang, Yuan-Hao Jin, Tian-Fu Zhang, Qun-Qing Li
  • Patent number: D847283
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: April 30, 2019
    Assignee: CSL HOLDINGS, LLC
    Inventor: Yang Xiao Yan