Patents by Inventor Yanning Sun

Yanning Sun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140264446
    Abstract: A method for forming fin field effect transistors includes forming a dielectric layer on a silicon substrate, forming high aspect ratio trenches in the dielectric layer down to the substrate, the high aspect ratio including a height to width ratio of greater than about 1:1 and epitaxially growing a non-silicon containing semiconductor material in the trenches using an aspect ratio trapping process to form fins. The one or more dielectric layers are etched to expose a portion of the fins. A barrier layer is epitaxially grown on the portion of the fins, and a gate stack is formed over the fins. A spacer is formed around the portion of the fins and the gate stack. Dopants are implanted into the portion of the fins. Source and drain regions are grown over the fins using a non-silicon containing semiconductor material.
    Type: Application
    Filed: August 14, 2013
    Publication date: September 18, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: ANIRBAN BASU, CHENG-WEI CHENG, AMLAN MAJUMDAR, RYAN M. MARTIN, UZMA RANA, DEVENDRA K. SADANA, KUEN-TING SHIU, YANNING SUN
  • Patent number: 8816333
    Abstract: Techniques for forming a thin coating of a material on a carbon-based material are provided. In one aspect, a method for forming a thin coating on a surface of a carbon-based material is provided. The method includes the following steps. An ultra thin silicon nucleation layer is deposited to a thickness of from about two angstroms to about 10 angstroms on at least a portion of the surface of the carbon-based material to facilitate nucleation of the coating on the surface of the carbon-based material. The thin coating is deposited to a thickness of from about two angstroms to about 100 angstroms over the ultra thin silicon layer to form the thin coating on the surface of the carbon-based material.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: August 26, 2014
    Assignee: International Business Machines Corporation
    Inventors: Katherina Babich, Alessandro Callegari, Zhihong Chen, Edward Kiewra, Yanning Sun
  • Publication number: 20140217468
    Abstract: A semiconductor structure includes a III-V monocrystalline layer and a germanium surface layer. An interlayer is formed directly between the III-V monocrystalline layer and the germanium surface layer from a material selected to provide stronger nucleation bonding between the interlayer and the germanium surface layer than nucleation bonding that would be achievable directly between the III-V monocrystalline layer and the germanium surface layer such that a continuous, relatively defect-free germanium surface layer is provided.
    Type: Application
    Filed: February 6, 2013
    Publication date: August 7, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cheng-Wei Cheng, Jack O. Chu, Devendra K. Sadana, Kuen-Ting Shiu, Yanning Sun
  • Publication number: 20140220766
    Abstract: A semiconductor structure includes a III-V monocrystalline layer and a germanium surface layer. An interlayer is formed directly between the III-V monocrystalline layer and the germanium surface layer from a material selected to provide stronger nucleation bonding between the interlayer and the germanium surface layer than nucleation bonding that would be achievable directly between the III-V monocrystalline layer and the germanium surface layer such that a continuous, relatively defect-free germanium surface layer is provided.
    Type: Application
    Filed: August 14, 2013
    Publication date: August 7, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cheng-Wei CHENG, JACK O. CHU, DEVENDRA K. SADANA, KUEN-TING SHIU, YANNING SUN
  • Publication number: 20130200443
    Abstract: Techniques for fabricating self-aligned contacts in III-V FET devices are provided. In one aspect, a method for fabricating a self-aligned contact to III-V materials includes the following steps. At least one metal is deposited on a surface of the III-V material. The at least one metal is reacted with an upper portion of the III-V material to form a metal-III-V alloy layer which is the self-aligned contact. An etch is used to remove any unreacted portions of the at least one metal. At least one impurity is implanted into the metal-III-V alloy layer. The at least one impurity implanted into the metal-III-V alloy layer is diffused to an interface between the metal-III-V alloy layer and the III-V material thereunder to reduce a contact resistance of the self-aligned contact.
    Type: Application
    Filed: February 8, 2012
    Publication date: August 8, 2013
    Applicant: International Business Machines Corporation
    Inventors: Christian Lavoie, Uzma Rana, Devendra K. Sadana, Kuen-Ting Shiu, Paul Michael Solomon, Yanning Sun, Zhen Zhang
  • Publication number: 20120235119
    Abstract: Techniques for forming a thin coating of a material on a carbon-based material are provided. In one aspect, a method for forming a thin coating on a surface of a carbon-based material is provided. The method includes the following steps. An ultra thin silicon nucleation layer is deposited to a thickness of from about two angstroms to about 10 angstroms on at least a portion of the surface of the carbon-based material to facilitate nucleation of the coating on the surface of the carbon-based material. The thin coating is deposited to a thickness of from about two angstroms to about 100 angstroms over the ultra thin silicon layer to form the thin coating on the surface of the carbon-based material.
    Type: Application
    Filed: May 29, 2012
    Publication date: September 20, 2012
    Applicant: International Business Machines Corporation
    Inventors: Katherina Babich, Alessandro Callegari, Zhihong Chen, Edward Kiewra, Yanning Sun
  • Publication number: 20110316565
    Abstract: A Schottky junction silicon nanowire field-effect biosensor/molecule detector with a nanowire thickness of 10 nanometer or less and an aligned source/drain workfunction for increased sensitivity. The nanowire channel is coated with a surface treatment to which a molecule of interest absorbs, which modulates the conductivity of the channel between the Schottky junctions sufficiently to qualitatively and quantitatively measure the presence and amount of the molecule.
    Type: Application
    Filed: June 29, 2010
    Publication date: December 29, 2011
    Applicant: International Business Machines Corp.
    Inventors: Dechao Guo, Christian Lavoie, Christine Qiqing Ouyang, Yanning Sun, Zhen Zhang
  • Patent number: 7964896
    Abstract: A semiconductor-containing heterostructure including, from bottom to top, a III-V compound semiconductor buffer layer, a III-V compound semiconductor channel layer, a III-V compound semiconductor barrier layer, and an optional, yet preferred, III-V compound semiconductor cap layer is provided. The barrier layer may be doped, or preferably undoped. The III-V compound semiconductor buffer layer and the III-V compound semiconductor barrier layer are comprised of materials that have a wider band gap than that of the III-V compound semiconductor channel layer. Since wide band gap materials are used for the buffer and barrier layer and a narrow band gap material is used for the channel layer, carriers are confined to the channel layer under certain gate bias range. The inventive heterostructure can be employed as a buried channel structure in a field effect transistor.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: June 21, 2011
    Assignee: International Business Machines Corporation
    Inventors: Edward W. Kiewra, Steven J. Koester, Devendra K. Sadana, Ghavam Shahidi, Yanning Sun
  • Publication number: 20100301336
    Abstract: Techniques for forming a thin coating of a material on a carbon-based material are provided. In one aspect, a method for forming a thin coating on a surface of a carbon-based material is provided. The method includes the following steps. An ultra thin silicon nucleation layer is deposited to a thickness of from about two angstroms to about 10 angstroms on at least a portion of the surface of the carbon-based material to facilitate nucleation of the coating on the surface of the carbon-based material. The thin coating is deposited to a thickness of from about two angstroms to about 100 angstroms over the ultra thin silicon layer to form the thin coating on the surface of the carbon-based material.
    Type: Application
    Filed: June 2, 2009
    Publication date: December 2, 2010
    Applicant: International Business Machines Corporation
    Inventors: Katherina Babich, Alessandro Callegari, Zhihong Chen, Edward Kiewra, Yanning Sun
  • Publication number: 20080296622
    Abstract: A semiconductor-containing heterostructure including, from bottom to top, a III-V compound semiconductor buffer layer, a III-V compound semiconductor channel layer, a III-V compound semiconductor barrier layer, and an optional, yet preferred, III-V compound semiconductor cap layer is provided. The barrier layer may be doped, or preferably undoped. The III-V compound semiconductor buffer layer and the III-V compound semiconductor barrier layer are comprised of materials that have a wider band gap than that of the III-V compound semiconductor channel layer. Since wide band gap materials are used for the buffer and barrier layer and a narrow band gap material is used for the channel layer, carriers are confined to the channel layer under certain gate bias range. The inventive heterostructure can be employed as a buried channel structure in a field effect transistor.
    Type: Application
    Filed: July 28, 2008
    Publication date: December 4, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Edward W. Kiewra, Steven J. Koester, Devendra K. Sadana, Ghavam Shahldi, Yanning Sun
  • Publication number: 20080001173
    Abstract: A semiconductor-containing heterostructure including, from bottom to top, a III-V compound semiconductor buffer layer, a III-V compound semiconductor channel layer, a III-V compound semiconductor barrier layer, and an optional, yet preferred, III-V compound semiconductor cap layer is provided. The barrier layer may be doped, or preferably undoped. The III-V compound semiconductor buffer layer and the III-V compound semiconductor barrier layer are comprised of materials that have a wider band gap than that of the III-V compound semiconductor channel layer. Since wide band gap materials are used for the buffer and barrier layer and a narrow band gap material is used for the channel layer, carriers are confined to the channel layer under certain gate bias range. The inventive heterostructure can be employed as a buried channel structure in a field effect transistor.
    Type: Application
    Filed: June 22, 2007
    Publication date: January 3, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Edward Kiewra, Steven Koester, Devendra Sadana, Ghavam Shahidi, Yanning Sun