Patents by Inventor Yasumasa Yamane

Yasumasa Yamane has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9825179
    Abstract: A novel oxide semiconductor is provided. An oxide semiconductor contains In, an element M (M represents Al, Ga, Y, or Sn), and Zn. The oxide semiconductor has little characteristics variation and structure change and has high electron mobility in the case where the atomic ratio of In to M and Zn in the oxide semiconductor ranges from 4:2:3 to 4:2:4.1 or is a neighborhood thereof.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: November 21, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masashi Tsubuku, Masashi Oota, Akihisa Shimomura, Yasumasa Yamane
  • Publication number: 20170317196
    Abstract: A manufacturing method of a semiconductor device in which the threshold voltage is adjusted is provided. The semiconductor device includes a first semiconductor, an electrode electrically connected to the first semiconductor, a gate electrode, and an electron trap layer between the gate electrode and the first semiconductor. By performing heat treatment at higher than or equal to 125 ° C. and lower than or equal to 450 ° C. and, at the same time, keeping a potential of the gate electrode higher than a potential of the electrode for 1 second or more, the threshold voltage is increased.
    Type: Application
    Filed: May 25, 2017
    Publication date: November 2, 2017
    Inventors: Tetsuhiro TANAKA, Toshihiko TAKEUCHI, Yasumasa YAMANE, Takayuki INOUE, Shunpei YAMAZAKI
  • Patent number: 9806200
    Abstract: A semiconductor device including a miniaturized transistor is provided. The semiconductor device includes a first insulator, a second insulator, a semiconductor, and a conductor. The semiconductor is over the first insulator. The second insulator is over the semiconductor. The conductor is over the second insulator. The semiconductor includes a first region, a second region, and a third region. The first region is a region where the semiconductor overlaps with the conductor. Each of the second region and the third region is a region where the semiconductor does not overlap with the conductor. The second region and the third region each have a region with a spinel crystal structure.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: October 31, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Tetsuhiro Tanaka, Masayuki Kimura, Ryo Tokumaru, Daisuke Matsubayashi, Yasumasa Yamane
  • Publication number: 20170309752
    Abstract: A highly reliable semiconductor device is provided. The semiconductor device includes a first barrier insulating film; a first gate electrode thereover; a first gate insulating film thereover; an oxide semiconductor film thereover; source and drain electrodes over the oxide semiconductor film; a second gate insulating film over the oxide semiconductor film; a second gate electrode over the second gate insulating film; a second barrier insulating film that covers the oxide semiconductor film, the source and the drain electrodes, and the second gate electrode, and is in contact with side surfaces of the oxide semiconductor film and the source and drain electrodes; and a third barrier insulating film thereover. The first to third barrier insulating films are less likely to transmit hydrogen, water, and oxygen than the first and second gate insulating films. The third barrier insulating film is thinner than the second barrier insulating film.
    Type: Application
    Filed: April 17, 2017
    Publication date: October 26, 2017
    Inventors: Shunpei YAMAZAKI, Daisuke MATSUBAYASHI, Ryo TOKUMARU, Yasumasa YAMANE, Kiyofumi OGINO, Taichi ENDO, Hajime KIMURA
  • Publication number: 20170309721
    Abstract: The reliability of a semiconductor device is increased by suppression of a variation in electric characteristics of a transistor as much as possible. As a cause of a variation in electric characteristics of a transistor including an oxide semiconductor, the concentration of hydrogen in the oxide semiconductor, the density of oxygen vacancies in the oxide semiconductor, or the like can be given. A source electrode and a drain electrode are formed using a conductive material which is easily bonded to oxygen. A channel formation region is formed using an oxide layer formed by a sputtering method or the like under an atmosphere containing oxygen. Thus, the concentration of hydrogen in a stack, in particular, the concentration of hydrogen in a channel formation region can be reduced.
    Type: Application
    Filed: July 6, 2017
    Publication date: October 26, 2017
    Inventors: Shunpei YAMAZAKI, Hideomi SUZAWA, Hiroshi FUJIKI, Hiromichi GODO, Yasumasa YAMANE
  • Publication number: 20170294542
    Abstract: A transistor with stable electrical characteristics is provided. The transistor includes a first insulator over a substrate; first to third oxide insulators over the first insulator; a second insulator over the third oxide insulator; a first conductor over the second insulator; and a third insulator over the first conductor. An energy level of a conduction band minimum of each of the first and second oxide insulators is closer to a vacuum level than that of the oxide semiconductor is. An energy level of a conduction band minimum of the third oxide insulator is closer to the vacuum level than that of the second oxide insulator is. The first insulator contains oxygen. The number of oxygen molecules released from the first insulator measured by thermal desorption spectroscopy is greater than or equal to 1E14 molecules/cm2 and less than or equal to 1E16 molecules/cm2.
    Type: Application
    Filed: June 26, 2017
    Publication date: October 12, 2017
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei YAMAZAKI, Tetsuhiro TANAKA, Akihisa SHIMOMURA, Yasumasa YAMANE, Ryo TOKUMARU, Yuhei SATO, Kazuhiro TSUTSUI
  • Patent number: 9722056
    Abstract: A change in electrical characteristics is suppressed and reliability in a semiconductor device using a transistor including an oxide semiconductor is improved. Oxygen is introduced into a surface of an insulating film, and then, an oxide semiconductor, a layer which is capable of blocking oxygen, a gate insulating film, and other films which composes a transistor are formed. For at least one of the first gate insulating film and the insulating film, three signals in Electron Spin Resonance Measurement are each observed in a certain range of g-factor. Reducing the sum of the spin densities of the signals will improve reliability of the semiconductor device.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: August 1, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Akihisa Shimomura, Yasumasa Yamane, Yuhei Sato, Tetsuhiro Tanaka, Masashi Tsubuku, Toshihiko Takeuchi, Ryo Tokumaru, Mitsuhiro Ichijo, Satoshi Toriumi, Takashi Ohtsuki, Toshiya Endo
  • Patent number: 9711610
    Abstract: The reliability of a semiconductor device is increased by suppression of a variation in electric characteristics of a transistor as much as possible. As a cause of a variation in electric characteristics of a transistor including an oxide semiconductor, the concentration of hydrogen in the oxide semiconductor, the density of oxygen vacancies in the oxide semiconductor, or the like can be given. A source electrode and a drain electrode are formed using a conductive material which is easily bonded to oxygen. A channel formation region is formed using an oxide layer formed by a sputtering method or the like under an atmosphere containing oxygen. Thus, the concentration of hydrogen in a stack, in particular, the concentration of hydrogen in a channel formation region can be reduced.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: July 18, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hideomi Suzawa, Hiroshi Fujiki, Hiromichi Godo, Yasumasa Yamane
  • Patent number: 9698277
    Abstract: A transistor with stable electrical characteristics is provided. The transistor includes a first insulator over a substrate; first to third oxide insulators over the first insulator; a second insulator over the third oxide insulator; a first conductor over the second insulator; and a third insulator over the first conductor. An energy level of a conduction band minimum of each of the first and second oxide insulators is closer to a vacuum level than that of the oxide semiconductor is. An energy level of a conduction band minimum of the third oxide insulator is closer to the vacuum level than that of the second oxide insulator is. The first insulator contains oxygen. The number of oxygen molecules released from the first insulator measured by thermal desorption spectroscopy is greater than or equal to 1E14 molecules/cm2 and less than or equal to 1E16 molecules/cm2.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: July 4, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Tetsuhiro Tanaka, Akihisa Shimomura, Yasumasa Yamane, Ryo Tokumaru, Yuhei Sato, Kazuhiro Tsutsui
  • Patent number: 9698274
    Abstract: A transistor with stable electrical characteristics or a transistor with normally-off electrical characteristics. The transistor is a semiconductor device including a conductor, a semiconductor, a first insulator, and a second insulator. The semiconductor is over the first insulator. The conductor is over the semiconductor. The second insulator is between the conductor and the semiconductor. The first insulator includes fluorine and hydrogen. The fluorine concentration of the first insulator is higher than the hydrogen concentration of the first insulator.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: July 4, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Akihisa Shimomura, Yasumasa Yamane, Naoto Yamade, Tetsuhiro Tanaka
  • Patent number: 9685563
    Abstract: A semiconductor device includes a first oxide semiconductor film, a second oxide semiconductor film over the first oxide semiconductor film, a source electrode in contact with the second oxide semiconductor film, a drain electrode in contact with the second oxide semiconductor film, a metal oxide film over the second oxide semiconductor film, the source electrode, and the drain electrode, a gate insulating film over the metal oxide film, and a gate electrode over the gate insulating film. The metal oxide film contains M (M represents Ti, Ga, Y, Zr, La, Ce, Nd, or Hf) and Zn. The metal oxide film includes a portion where x/(x+y) is greater than 0.67 and less than or equal to 0.99 when a target has an atomic ratio of M:Zn=x:y.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: June 20, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masashi Tsubuku, Toshihiko Takeuchi, Yasumasa Yamane, Masashi Oota
  • Patent number: 9666697
    Abstract: A manufacturing method of a semiconductor device in which the threshold voltage is adjusted is provided. The semiconductor device includes a first semiconductor, an electrode electrically connected to the first semiconductor, a gate electrode, and an electron trap layer between the gate electrode and the first semiconductor. By performing heat treatment at higher than or equal to 125° C. and lower than or equal to 450° C. and, at the same time, keeping a potential of the gate electrode higher than a potential of the electrode for 1 second or more, the threshold voltage is increased.
    Type: Grant
    Filed: June 24, 2014
    Date of Patent: May 30, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tetsuhiro Tanaka, Toshihiko Takeuchi, Yasumasa Yamane, Takayuki Inoue, Shunpei Yamazaki
  • Publication number: 20170141233
    Abstract: Favorable electrical characteristics are given to a semiconductor device. Furthermore, a semiconductor device having high reliability is provided. One embodiment of the present invention is an oxide semiconductor film having a plurality of electron diffraction patterns which are observed in such a manner that a surface where the oxide semiconductor film is formed is irradiated with an electron beam having a probe diameter whose half-width is 1 nm. The plurality of electron diffraction patterns include 50 or more electron diffraction patterns which are observed in different areas, the sum of the percentage of first electron diffraction patterns and the percentage of second electron diffraction patterns accounts for 100%, the first electron diffraction patterns account for 90% or more, the first electron diffraction pattern includes observed points which indicates that a c-axis is oriented in a direction substantially perpendicular to the surface where the oxide semiconductor film is formed.
    Type: Application
    Filed: January 27, 2017
    Publication date: May 18, 2017
    Inventors: Akihisa SHIMOMURA, Yasumasa YAMANE, Yuhei SATO, Takahisa ISHIYAMA, Kenichi OKAZAKI, Chiho KAWANABE, Masashi OOTA, Noritaka ISHIHARA
  • Patent number: 9653613
    Abstract: Provided is a transistor with stable electrical characteristics. Provided is a semiconductor device including an oxide semiconductor over a substrate, a first conductor in contact with a top surface of the oxide semiconductor, a second conductor in contact with the top surface of the oxide semiconductor, a first insulator over the first and second conductors and in contact with the top surface of the oxide semiconductor, a second insulator over the first insulator, a third conductor over the second insulator, and a third insulator over the third conductor. The third conductor overlaps with the first conductor with the first and second insulators positioned therebetween, and overlaps with the second conductor with the first and second insulators positioned therebetween. The first insulator contains oxygen. The second insulator transmits less oxygen than the first insulator. The third insulator transmits less oxygen than the first insulator.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: May 16, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Tetsuhiro Tanaka, Akihisa Shimomura, Ryo Tokumaru, Yasumasa Yamane, Yuhei Sato, Naoki Okuno, Motoki Nakashima
  • Publication number: 20170125553
    Abstract: A method for manufacturing a semiconductor device includes the steps of forming a first insulating film over a first gate electrode over a substrate while heated at a temperature higher than or equal to 450° C. and lower than the strain point of the substrate, forming a first oxide semiconductor film over the first insulating film, adding oxygen to the first oxide semiconductor film and then forming a second oxide semiconductor film over the first oxide semiconductor film, and performing heat treatment so that part of oxygen contained in the first oxide semiconductor film is transferred to the second oxide semiconductor film.
    Type: Application
    Filed: November 14, 2016
    Publication date: May 4, 2017
    Inventors: Shunpei YAMAZAKI, Tetsuhiro TANAKA, Masayuki SAKAKURA, Ryo TOKUMARU, Yasumasa YAMANE, Yuhei SATO
  • Publication number: 20170062192
    Abstract: An oxide with high crystallinity is provided. An oxide having a crystal structure with few defects is provided. An oxide with a low density of defect states is provided. An oxide with a low impurity concentration is provided. A film forming apparatus capable of forming a film of the above-described oxide can be provided. The film forming apparatus includes a target holder, a substrate holder, a first power source, and a second power source. The target holder is electrically connected to the first power source, the substrate holder is electrically connected to the second power source, and the second power source is configured to apply a potential that is higher than a ground potential.
    Type: Application
    Filed: August 11, 2016
    Publication date: March 2, 2017
    Inventors: Masashi OOTA, Takuya KAWATA, Yasumasa YAMANE, Yuta ENDO
  • Publication number: 20170062620
    Abstract: A novel oxide semiconductor is provided. An oxide semiconductor contains In, an element M (M represents Al, Ga, Y, or Sn), and Zn. The oxide semiconductor has little characteristics variation and structure change and has high electron mobility in the case where the atomic ratio of In to M and Zn in the oxide semiconductor ranges from 4:2:3 to 4:2:4.1 or is a neighborhood thereof.
    Type: Application
    Filed: August 23, 2016
    Publication date: March 2, 2017
    Inventors: Shunpei YAMAZAKI, Masashi TSUBUKU, Masashi OOTA, Akihisa SHIMOMURA, Yasumasa YAMANE
  • Publication number: 20170033230
    Abstract: To provide a transistor with stable electrical characteristics, a transistor with a low off-state current, a transistor with a high on-state current, a semiconductor device including the transistor, or a durable semiconductor device. The semiconductor device includes a first transistor using silicon, an aluminum oxide film over the first transistor, and a second transistor using an oxide semiconductor over the aluminum oxide film. The oxide semiconductor has a lower hydrogen concentration than silicon.
    Type: Application
    Filed: October 13, 2016
    Publication date: February 2, 2017
    Inventors: Shunpei YAMAZAKI, Tetsuhiro TANAKA, Hideomi SUZAWA, Yasumasa YAMANE, Yuhei SATO, Sachiaki TEZUKA
  • Patent number: 9559174
    Abstract: Favorable electrical characteristics are given to a semiconductor device. Furthermore, a semiconductor device having high reliability is provided. One embodiment of the present invention is an oxide semiconductor film having a plurality of electron diffraction patterns which are observed in such a manner that a surface where the oxide semiconductor film is formed is irradiated with an electron beam having a probe diameter whose half-width is 1 nm. The plurality of electron diffraction patterns include 50 or more electron diffraction patterns which are observed in different areas, the sum of the percentage of first electron diffraction patterns and the percentage of second electron diffraction patterns accounts for 100%, the first electron diffraction patterns account for 90% or more, the first electron diffraction pattern includes observed points which indicates that a c-axis is oriented in a direction substantially perpendicular to the surface where the oxide semiconductor film is formed.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: January 31, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Yasumasa Yamane, Yuhei Sato, Takahisa Ishiyama, Kenichi Okazaki, Chiho Kawanabe, Masashi Oota, Noritaka Ishihara
  • Publication number: 20170018631
    Abstract: A change in electrical characteristics is suppressed and reliability in a semiconductor device using a transistor including an oxide semiconductor is improved. The semiconductor device includes an oxide semiconductor film over an insulating surface, an antioxidant film over the insulating surface and the oxide semiconductor film, a pair of electrodes in contact with the antioxidant film, a gate insulating film over the pair of electrodes, and a gate electrode which is over the gate insulating film and overlaps with the oxide semiconductor film. In the antioxidant film, a width of a region overlapping with the pair of electrodes is longer than a width of a region not overlapping with the pair of electrodes.
    Type: Application
    Filed: September 27, 2016
    Publication date: January 19, 2017
    Inventors: Shunpei YAMAZAKI, Akihisa SHIMOMURA, Yasumasa YAMANE, Yuhei SATO, Tetsuhiro TANAKA, Masashi TSUBUKU, Toshihiko TAKEUCHI, Ryo TOKUMARU, Mitsuhiro ICHIJO, Satoshi TORIUMI, Takashi OHTSUKI, Toshiya ENDO