Patents by Inventor Yasunari Umemoto

Yasunari Umemoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11949003
    Abstract: A collector layer, a base layer, and an emitter layer that are disposed on a substrate form a bipolar transistor. An emitter electrode is in ohmic contact with the emitter layer. The emitter layer has a shape that is long in one direction in plan view. A difference in dimension with respect to a longitudinal direction of the emitter layer between the emitter layer and an ohmic contact interface at which the emitter layer and the emitter electrode are in ohmic contact with each other is larger than a difference in dimension with respect to a width direction of the emitter layer between the emitter layer and the ohmic contact interface.
    Type: Grant
    Filed: April 6, 2022
    Date of Patent: April 2, 2024
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yasunari Umemoto, Isao Obu, Kaoru Ideno, Shigeki Koya
  • Patent number: 11894365
    Abstract: Multiple bipolar transistors are disposed side by side in the first direction on a substrate. Multiple first capacitance devices are provided corresponding to the respective base electrodes of the bipolar transistors. A radio frequency signal is supplied to the bipolar transistors through the first capacitance devices. Resistive devices are provided corresponding to the respective base electrodes of the bipolar transistors. A base bias is supplied to the bipolar transistors through the resistive devices. The first capacitance devices are disposed on the same side relative to the second direction orthogonal to the first direction, when viewed from the bipolar transistors. At least one of the first capacitance devices is disposed so as to overlap another first capacitance device partially when viewed in the second direction from the bipolar transistors.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: February 6, 2024
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Shaojun Ma, Yasunari Umemoto, Kenji Sasaki
  • Publication number: 20240014297
    Abstract: A semiconductor device includes an emitter electrode above an emitter layer of a bipolar transistor. An interlayer insulating film is on the emitter electrode. An emitter contact hole is in the interlayer insulating film and is surrounded by the emitter electrode when viewed in plan view. An emitter wire is on the interlayer insulating film. The emitter wire is coupled to the emitter electrode through the emitter contact hole. When viewed in plan view, the emitter electrode and the emitter contact hole are elongated in one direction. The length of the emitter contact hole is 85% or less of the length of the emitter electrode. Of two side ends of the emitter electrode, the distance from each side end to the emitter contact hole is 5% or more of the length of the emitter electrode. This configuration further enhances the temperature uniformity in the bipolar transistor in operation.
    Type: Application
    Filed: September 25, 2023
    Publication date: January 11, 2024
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Shaojun MA, Yasunari UMEMOTO, Shigeki KOYA
  • Patent number: 11830917
    Abstract: A collector layer is disposed on a substrate. The collector layer is a continuous region when viewed in plan. A base layer is disposed on the collector layer. An emitter layer is disposed on the base layer. An emitter mesa layer is disposed on the emitter layer. Two base electrodes are located outside the emitter mesa layer and within the base layer when viewed in plan. The two base electrodes are electrically connected to the base layer. Two capacitors are disposed on or above the substrate. Each of the two capacitors is connected between a corresponding one of the two base electrodes and a first line above the substrate. Two resistance elements are disposed on or above the substrate. Each of the two resistance elements is connected between a corresponding one of the two base electrodes and a second line on or above the substrate.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: November 28, 2023
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yasunari Umemoto, Shaojun Ma, Shigeki Koya
  • Patent number: 11817356
    Abstract: A collector layer, a base layer, an emitter layer, and an emitter mesa layer are placed above a substrate in this order. A base electrode and an emitter electrode are further placed above the substrate. The emitter mesa layer has a long shape in a first direction in plan view. The base electrode includes a base electrode pad portion spaced from the emitter mesa layer in the first direction. An emitter wiring line and a base wiring line are placed on the emitter electrode and the base electrode, respectively. The emitter wiring line is connected to the emitter electrode via an emitter contact hole. In the first direction, the spacing between the edges of the emitter mesa layer and the emitter contact hole on the side of the base wiring line is smaller than that between the emitter mesa layer and the base wiring line.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: November 14, 2023
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yasunari Umemoto, Shigeki Koya, Isao Obu, Kaoru Ideno
  • Patent number: 11784245
    Abstract: An electrically conductive sub-collector layer is provided in a surface layer portion of a substrate. A collector layer, a base layer, and an emitter layer are located within the sub-collector layer when viewed in plan. The collector layer is connected to the sub-collector layer. An emitter electrode and a base electrode are long in a first direction when viewed in plan. The emitter electrode overlaps the emitter layer. The base electrode and the emitter electrode are discretely located away from each other in a second direction orthogonal to the first direction. A collector electrode is located on one side in the second direction with respect to the emitter electrode and is not located on the other side when viewed in plan. A base line is connected to the base electrode in a manner so as to adjoin a portion other than longitudinal ends of the base electrode.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: October 10, 2023
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Kenji Sasaki, Yasunari Umemoto, Shigeki Koya, Shinnosuke Takahashi, Masao Kondo
  • Patent number: 11705509
    Abstract: A heterojunction bipolar transistor includes a collector layer, a base layer, and an emitter layer that are stacked on a substrate. The collector layer includes a graded semiconductor layer in which an electron affinity increases from a side closer to the base layer toward a side farther from the base layer. An electron affinity of the base layer at an interface closer to the collector layer is equal to an electron affinity of the graded semiconductor layer at an interface closer to the base layer.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: July 18, 2023
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yasunari Umemoto, Shigeki Koya, Isao Obu
  • Patent number: 11705875
    Abstract: A power amplifier module includes a first substrate and a second substrate, at least part of the second substrate being disposed in a region overlapping the first substrate. The second substrate includes a first amplifier circuit and a second amplifier circuit. The first substrate includes a first transformer including a primary winding having a first end and a second end and a secondary winding having a first end and a second end; a second transformer including a primary winding having a first end and a second end and a secondary winding having a first end and a second end; and multiple first conductors disposed in a row between the first transformer and the second transformer, each of the multiple first conductors extending from the wiring layer on a first main surface to the wiring layer on a second main surface of the substrate.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: July 18, 2023
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Shigeki Koya, Yasunari Umemoto, Yuichi Saito, Isao Obu, Takayuki Tsutsui
  • Patent number: 11658180
    Abstract: A semiconductor device has a semiconductor substrate, and multiple first bipolar transistors on the first primary surface side of the semiconductor substrate. The first bipolar transistors have a first height between an emitter layer and an emitter electrode in the direction perpendicular to the first primary surface. The semiconductor device further has at least one second bipolar transistor on the first primary surface side of the semiconductor substrate. The second bipolar transistor have a second height, greater than the first height, between an emitter layer and an emitter electrode in the direction perpendicular to the first primary surface. Also, the semiconductor has a first bump stretching over the multiple first bipolar transistors and the at least one second bipolar transistor.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: May 23, 2023
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Isao Obu, Shigeki Koya, Yasunari Umemoto, Takayuki Tsutsui
  • Patent number: 11631758
    Abstract: A semiconductor device includes a collector layer, a base layer, and an emitter layer that are disposed above a substrate. An emitter mesa layer is disposed on a partial region of the emitter layer. In a plan view, the base electrode is disposed in or on a region which does not overlap the emitter mesa layer. The base electrode allows base current to flow to the base layer. In the plan view, a first edge forming part of edges of the emitter mesa layer extends in a first direction, and a second edge forming part of edges of the base electrode faces the first edge. A gap between the first edge and the second edge in a terminal portion located in an end portion of the emitter mesa layer in the first direction is wider than a gap in an intermediate portion of the emitter mesa layer.
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: April 18, 2023
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yasunari Umemoto, Isao Obu, Kaoru Ideno, Shigeki Koya
  • Patent number: 11626511
    Abstract: A bipolar transistor including a first collector layer, a second collector layer, a base layer, and an emitter layer is disposed on a substrate. Etching characteristics of the second collector layer are different from etching characteristics of the first collector layer and the base layer. In plan view, an edge of an interface between the first collector layer and the second collector layer is disposed inside an edge of a lower surface of the base layer, and an edge of an upper surface of the second collector layer coincides with the edge of the lower surface of the base layer or is disposed inside the edge of the lower surface of the base layer.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: April 11, 2023
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Isao Obu, Yasunari Umemoto, Masahiro Shibata, Shigeki Koya, Masao Kondo, Takayuki Tsutsui
  • Patent number: 11621678
    Abstract: A circuit element is formed on a substrate made of a compound semiconductor. A bonding pad is disposed on the circuit element so as to at least partially overlap the circuit element. The bonding pad includes a first metal film and a second metal film formed on the first metal film. A metal material of the second metal film has a higher Young's modulus than a metal material of the first metal film.
    Type: Grant
    Filed: January 7, 2021
    Date of Patent: April 4, 2023
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Isao Obu, Yasunari Umemoto, Masahiro Shibata, Kenichi Nagura
  • Patent number: 11557664
    Abstract: A first sub-collector layer functions as an inflow path of a collector current that flows in a collector layer of a heterojunction bipolar transistor. A collector ballast resistor layer having a lower doping concentration than the first sub-collector layer is disposed between the collector layer and the first sub-collector layer.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: January 17, 2023
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Isao Obu, Yasunari Umemoto, Takayuki Tsutsui, Satoshi Tanaka
  • Patent number: 11532736
    Abstract: A semiconductor device that includes a bipolar transistor, wherein a third opening, through which a pillar bump and a second wiring line, which is electrically connected to an emitter layer, contact each other, is shifted in a longitudinal direction of the emitter layer away from a position at which the third opening would be directly above the emitter layer. The third opening is arranged, with respect to the emitter layer, such that an end portion of the emitter layer in the longitudinal direction of the emitter layer and the edge of the opening of the third opening are substantially aligned with each other.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: December 20, 2022
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yasunari Umemoto, Daisuke Tokuda, Tsunekazu Saimei, Hiroaki Tokuya
  • Patent number: 11508835
    Abstract: A bipolar transistor comprising a subcollector layer, and a collector layer on the subcollector layer. The collector layer includes a plurality of doped layers. The plurality of doped layers includes a first doped layer that has a highest impurity concentration thereamong and is on a side of or in contact with the subcollector layer. Also, the first doped layer includes a portion that extends beyond at least one edge of the plurality of doped layers in a cross-sectional view.
    Type: Grant
    Filed: January 5, 2022
    Date of Patent: November 22, 2022
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yasunari Umemoto, Shigeki Koya, Atsushi Kurokawa
  • Patent number: 11476807
    Abstract: A power amplifier module includes a first amplifier circuit that amplifies a radio frequency signal with a first gain corresponding to a first control signal to generate a first amplified signal; a second amplifier circuit that amplifies the first amplified signal with a second gain corresponding to a second control signal to generate a second amplified signal; and a control unit that generates the first control signal and the second control signal. The second control signal is a control signal for increasing a power-supply voltage for the second amplifier circuit as a peak-to-average power ratio of the radio frequency signal increases. The first control signal is a control signal for controlling the first gain of the first amplifier circuit so that a variation in the second gain involved in a variation in the power-supply voltage for the second amplifier circuit is compensated for.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: October 18, 2022
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Shigeki Koya, Takayuki Tsutsui, Yasunari Umemoto, Isao Obu, Satoshi Tanaka
  • Patent number: 11424350
    Abstract: A collector layer of an HBT includes a high-concentration collector layer and a low-concentration collector layer thereon. The low-concentration collector layer includes a graded collector layer in which the energy band gap varies to narrow with increasing distance from the base layer. The electron affinity of the semiconductor material for the base layer is greater than that of the semiconductor material for the graded collector layer at the point of the largest energy band gap by about 0.15 eV or less. The electron velocity in the graded collector layer peaks at a certain electric field strength. In the graded collector layer, the strength of the quasi-electric field, an electric field that acts on electrons as a result of the varying energy band gap, is between about 0.3 times and about 1.8 times the peak electric field strength, the electric field strength at which the electron velocity peaks.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: August 23, 2022
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yasunari Umemoto, Shigeki Koya, Isao Obu
  • Publication number: 20220231150
    Abstract: A collector layer, a base layer, and an emitter layer that are disposed on a substrate form a bipolar transistor. An emitter electrode is in ohmic contact with the emitter layer. The emitter layer has a shape that is long in one direction in plan view. A difference in dimension with respect to a longitudinal direction of the emitter layer between the emitter layer and an ohmic contact interface at which the emitter layer and the emitter electrode are in ohmic contact with each other is larger than a difference in dimension with respect to a width direction of the emitter layer between the emitter layer and the ohmic contact interface.
    Type: Application
    Filed: April 6, 2022
    Publication date: July 21, 2022
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Yasunari UMEMOTO, Isao OBU, Kaoru IDENO, Shigeki KOYA
  • Publication number: 20220190124
    Abstract: A power amplifier that includes a substrate, and an emitter layer, a base layer, and a collector layer laminated in this order on a major surface of the substrate includes an electrical insulator provided adjacent to the emitter layer, an emitter electrode provided between the substrate and both the emitter layer and the electrical insulator, a base electrode electrically connected to the base layer, and a collector electrode electrically connected to the collector layer. The emitter electrode, the electrical insulator, and the base layer are provided between the substrate and the base electrode in a direction perpendicular to the major surface of the substrate.
    Type: Application
    Filed: December 13, 2021
    Publication date: June 16, 2022
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Shaojun MA, Shigeki KOYA, Masayuki AOIKE, Shinnosuke TAKAHASHI, Yasunari UMEMOTO, Masatoshi HASE
  • Publication number: 20220173702
    Abstract: A power amplifier circuit includes an amplification unit, a heating unit, and a control circuit. The amplification unit is configured to amplify a radio-frequency signal. The heating unit is provided adjacent to the amplification unit. The heating unit includes one or more transistors configured to generate heat that increases as the passing current increases. The control circuit is coupled to the one or more transistors. The control circuit is configured to increase the passing current when the environmental temperature is a predetermined threshold or lower.
    Type: Application
    Filed: October 21, 2021
    Publication date: June 2, 2022
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Masao KONDO, Yasunari UMEMOTO, Shaojun MA, Shinnosuke TAKAHASHI