Patents by Inventor Yezheng Tao

Yezheng Tao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160007434
    Abstract: An initial pulse of radiation is generated; a section of the initial pulse of radiation is extracted to form a modified pulse of radiation, the modified pulse of radiation including a first portion and a second portion, the first portion being temporally connected to the second portion, and the first portion having a maximum energy that is less than a maximum energy of the second portion; the first portion of the modified pulse of radiation is interacted with a target material to form a modified target; and the second portion of the modified pulse of radiation is interacted with the modified target to generate plasma that emits extreme ultraviolet (EUV) light.
    Type: Application
    Filed: July 7, 2014
    Publication date: January 7, 2016
    Inventors: Yezheng Tao, John Tom Stewart, IV, Jordan Jur, Andrew LaForge, Daniel Brown, Jason M. Arcand, Alexander A. Schafgans, Michael A. Purvis
  • Patent number: 9232624
    Abstract: Techniques for generating EUV light include directing a first pulse of radiation toward a target material droplet to form a modified droplet, the first pulse of radiation having an energy sufficient to alter a shape of the target material droplet; directing a second pulse of radiation toward the modified droplet to form an absorption material, the second pulse of radiation having an energy sufficient to change a property of the modified droplet, the property being related to absorption of radiation; and directing an amplified light beam toward the absorption material, the amplified light beam having an energy sufficient to convert at least a portion of the absorption material into extreme ultraviolet (EUV) light.
    Type: Grant
    Filed: August 4, 2015
    Date of Patent: January 5, 2016
    Assignee: ASML Netherlands B.V.
    Inventors: Robert J. Rafac, Yezheng Tao
  • Publication number: 20150342016
    Abstract: Techniques for generating EUV light include directing a first pulse of radiation toward a target material droplet to form a modified droplet, the first pulse of radiation having an energy sufficient to alter a shape of the target material droplet; directing a second pulse of radiation toward the modified droplet to form an absorption material, the second pulse of radiation having an energy sufficient to change a property of the modified droplet, the property being related to absorption of radiation; and directing an amplified light beam toward the absorption material, the amplified light beam having an energy sufficient to convert at least a portion of the absorption material into extreme ultraviolet (EUV) light.
    Type: Application
    Filed: August 4, 2015
    Publication date: November 26, 2015
    Inventors: Robert J. Rafac, Yezheng Tao
  • Patent number: 9155179
    Abstract: Techniques for forming a target and for producing extreme ultraviolet light include releasing an initial target material toward a target location, the target material including a material that emits extreme ultraviolet (EUV) light when converted to plasma; directing a first amplified light beam toward the initial target material, the first amplified light beam having an energy sufficient to form a collection of pieces of target material from the initial target material, each of the pieces being smaller than the initial target material and being spatially distributed throughout a hemisphere shaped volume; and directing a second amplified light beam toward the collection of pieces to convert the pieces of target material to plasma that emits EUV light.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: October 6, 2015
    Assignee: ASML Netherlands B.V.
    Inventors: Yezheng Tao, Robert J. Rafac, Igor V. Fomenkov, Daniel J. W. Brown, Daniel J. Golich
  • Publication number: 20150250045
    Abstract: A system for an extreme ultraviolet (EUV) light source includes an optical amplifier including a gain medium positioned on a beam path, the optical amplifier configured to receive a light beam at an input and to emit an output light beam for an EUV light source at an output; a feedback system that measures a property of the output light beam and produces a feedback signal based on the measured property; and an adaptive optic positioned in the beam path and configured to receive the feedback signal and to adjust a property of the output light beam in response to the feedback signal.
    Type: Application
    Filed: February 28, 2014
    Publication date: September 3, 2015
    Inventors: Yezheng Tao, Daniel J.W. Brown, Alexander Schafgans, Michael David Caudill, Daniel J. Golich, Richard L. Sandstrom, Yoshiho Amada
  • Patent number: 9107279
    Abstract: Techniques for generating EUV light include directing a first pulse of radiation toward a target material droplet to form a modified droplet, the first pulse of radiation having an energy sufficient to alter a shape of the target material droplet; directing a second pulse of radiation toward the modified droplet to form an absorption material, the second pulse of radiation having an energy sufficient to change a property of the modified droplet, the property being related to absorption of radiation; and directing an amplified light beam toward the absorption material, the amplified light beam having an energy sufficient to convert at least a portion of the absorption material into extreme ultraviolet (EUV) light.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: August 11, 2015
    Assignee: ASML Netherlands B.V.
    Inventors: Robert J. Rafac, Yezheng Tao
  • Publication number: 20150189729
    Abstract: Techniques for generating EUV light include directing a first pulse of radiation toward a target material droplet to form a modified droplet, the first pulse of radiation having an energy sufficient to alter a shape of the target material droplet; directing a second pulse of radiation toward the modified droplet to form an absorption material, the second pulse of radiation having an energy sufficient to change a property of the modified droplet, the property being related to absorption of radiation; and directing an amplified light beam toward the absorption material, the amplified light beam having an energy sufficient to convert at least a portion of the absorption material into extreme ultraviolet (EUV) light.
    Type: Application
    Filed: December 8, 2014
    Publication date: July 2, 2015
    Inventors: Robert J. Rafac, Yezheng Tao
  • Publication number: 20150189728
    Abstract: A first remaining plasma that at least partially coincides with a target region is formed; a target including target material in a first spatial distribution to the target region is provided, the target material including material that emits EUV light when converted to plasma; the first remaining plasma and the initial target interact, the interaction rearranging the target material from the first spatial distribution to a shaped target distribution to form a shaped target in the target region, the shaped target including the target material arranged in the shaped spatial distribution; an amplified light beam is directed toward the target region to convert at least some of the target material in the shaped target to a plasma that emits EUV light; and a second remaining plasma is formed in the target region.
    Type: Application
    Filed: December 8, 2014
    Publication date: July 2, 2015
    Inventors: Yezheng Tao, John Tom Stewart, IV, Daniel J.W. Brown
  • Publication number: 20150076374
    Abstract: Techniques for forming a target and for producing extreme ultraviolet light include releasing an initial target material toward a target location, the target material including a material that emits extreme ultraviolet (EUV) light when converted to plasma; directing a first amplified light beam toward the initial target material, the first amplified light beam having an energy sufficient to form a collection of pieces of target material from the initial target material, each of the pieces being smaller than the initial target material and being spatially distributed throughout a hemisphere shaped volume; and directing a second amplified light beam toward the collection of pieces to convert the pieces of target material to plasma that emits EUV light.
    Type: Application
    Filed: November 21, 2014
    Publication date: March 19, 2015
    Inventors: Yezheng Tao, Robert J. Rafac, Igor V. Fomenkov, Daniel J.W. Brown, Daniel J. Golich
  • Patent number: 8927952
    Abstract: Techniques for generating EUV light include directing a first pulse of radiation toward a target material droplet to form a modified droplet, the first pulse of radiation having an energy sufficient to alter a shape of the target material droplet; directing a second pulse of radiation toward the modified droplet to form an absorption material, the second pulse of radiation having an energy sufficient to change a property of the modified droplet, the property being related to absorption of radiation; and directing an amplified light beam toward the absorption material, the amplified light beam having an energy sufficient to convert at least a portion of the absorption material into extreme ultraviolet (EUV) light.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: January 6, 2015
    Assignee: ASML Netherlands B.V.
    Inventors: Robert J. Rafac, Yezheng Tao
  • Patent number: 8912514
    Abstract: Techniques for forming a target and for producing extreme ultraviolet light include releasing an initial target material toward a target location, the target material including a material that emits extreme ultraviolet (EUV) light when converted to plasma; directing a first amplified light beam toward the initial target material, the first amplified light beam having an energy sufficient to form a collection of pieces of target material from the initial target material, each of the pieces being smaller than the initial target material and being spatially distributed throughout a hemisphere shaped volume; and directing a second amplified light beam toward the collection of pieces to convert the pieces of target material to plasma that emits EUV light.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: December 16, 2014
    Assignee: ASML Netherlands B.V.
    Inventors: Yezheng Tao, Robert J. Rafac, Igor V. Fomenkov, Daniel J. W. Brown, Daniel J. Golich
  • Patent number: 8872143
    Abstract: Techniques for generating EUV light include directing a first pulse of radiation toward a target material droplet to form a modified droplet, the first pulse of radiation having an energy sufficient to alter a shape of the target material droplet; directing a second pulse of radiation toward the modified droplet to form an absorption material, the second pulse of radiation having an energy sufficient to change a property of the modified droplet, the property being related to absorption of radiation; and directing an amplified light beam toward the absorption material, the amplified light beam having an energy sufficient to convert at least a portion of the absorption material into extreme ultraviolet (EUV) light.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: October 28, 2014
    Assignee: ASML Netherlands B.V.
    Inventors: Robert J. Rafac, Yezheng Tao
  • Patent number: 8866110
    Abstract: Techniques are described that enhance power from an extreme ultraviolet light source with feedback from a target material that has been modified prior to entering a target location into a spatially-extended target distribution or expanded target. The feedback from the spatially-extended target distribution provides a nonresonant optical cavity because the geometry of the path over which feedback occurs, such as the round-trip length and direction, can change in time, or the shape of the spatially-extended target distribution may not provide a smooth enough reflectance. However, it may be possible that the feedback from the spatially-extended target distribution provides a resonant and coherent optical cavity if the geometric and physical constraints noted above are overcome. In any case, the feedback can be generated using spontaneously emitted light that is produced from a non-oscillator gain medium.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: October 21, 2014
    Assignee: ASML Netherlands B.V.
    Inventors: Yezheng Tao, Robert Jay Rafac, Igor V. Fomenkov, Daniel J. W. Brown
  • Publication number: 20140299791
    Abstract: Techniques for forming a target and for producing extreme ultraviolet light include releasing an initial target material toward a target location, the target material including a material that emits extreme ultraviolet (EUV) light when converted to plasma; directing a first amplified light beam toward the initial target material, the first amplified light beam having an energy sufficient to form a collection of pieces of target material from the initial target material, each of the pieces being smaller than the initial target material and being spatially distributed throughout a hemisphere shaped volume; and directing a second amplified light beam toward the collection of pieces to convert the pieces of target material to plasma that emits EUV light.
    Type: Application
    Filed: June 20, 2014
    Publication date: October 9, 2014
    Inventors: Yezheng Tao, Robert J. Rafac, Igor V. Fomenkov, Daniel J.W. Brown, Daniel J. Golich
  • Publication number: 20140264092
    Abstract: Techniques are described that enhance power from an extreme ultraviolet light source with feedback from a target material that has been modified prior to entering a target location into a spatially-extended target distribution or expanded target. The feedback from the spatially-extended target distribution provides a nonresonant optical cavity because the geometry of the path over which feedback occurs, such as the round-trip length and direction, can change in time, or the shape of the spatially-extended target distribution may not provide a smooth enough reflectance. However, it may be possible that the feedback from the spatially-extended target distribution provides a resonant and coherent optical cavity if the geometric and physical constraints noted above are overcome. In any case, the feedback can be generated using spontaneously emitted light that is produced from a non-oscillator gain medium.
    Type: Application
    Filed: March 6, 2014
    Publication date: September 18, 2014
    Inventors: Yezheng Tao, Robert Jay Rafac, Igor V. Fomenkov, Daniel J.W. Brown
  • Publication number: 20140264087
    Abstract: Techniques for generating EUV light include directing a first pulse of radiation toward a target material droplet to form a modified droplet, the first pulse of radiation having an energy sufficient to alter a shape of the target material droplet; directing a second pulse of radiation toward the modified droplet to form an absorption material, the second pulse of radiation having an energy sufficient to change a property of the modified droplet, the property being related to absorption of radiation; and directing an amplified light beam toward the absorption material, the amplified light beam having an energy sufficient to convert at least a portion of the absorption material into extreme ultraviolet (EUV) light.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventors: Robert J. Rafac, Yezheng Tao
  • Publication number: 20140264090
    Abstract: Techniques for generating EUV light include directing a first pulse of radiation toward a target material droplet to form a modified droplet, the first pulse of radiation having an energy sufficient to alter a shape of the target material droplet; directing a second pulse of radiation toward the modified droplet to form an absorption material, the second pulse of radiation having an energy sufficient to change a property of the modified droplet, the property being related to absorption of radiation; and directing an amplified light beam toward the absorption material, the amplified light beam having an energy sufficient to convert at least a portion of the absorption material into extreme ultraviolet (EUV) light.
    Type: Application
    Filed: January 10, 2014
    Publication date: September 18, 2014
    Inventors: Robert J. Rafac, Yezheng Tao
  • Patent number: 8791440
    Abstract: Techniques for forming a target and for producing extreme ultraviolet light include releasing an initial target material toward a target location, the target material including a material that emits extreme ultraviolet (EUV) light when converted to plasma; directing a first amplified light beam toward the initial target material, the first amplified light beam having an energy sufficient to form a collection of pieces of target material from the initial target material, each of the pieces being smaller than the initial target material and being spatially distributed throughout a hemisphere shaped volume; and directing a second amplified light beam toward the collection of pieces to convert the pieces of target material to plasma that emits EUV light.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: July 29, 2014
    Assignee: ASML Netherlands B.V.
    Inventors: Yezheng Tao, Robert J. Rafac, Igor V. Fomenkov, Daniel J. W. Brown, Daniel J. Golich
  • Patent number: 8680495
    Abstract: Techniques are described that enhance power from an extreme ultraviolet light source with feedback from a target material that has been modified prior to entering a target location into a spatially-extended target distribution or expanded target. The feedback from the spatially-extended target distribution provides a nonresonant optical cavity because the geometry of the path over which feedback occurs, such as the round-trip length and direction, can change in time, or the shape of the spatially-extended target distribution may not provide a smooth enough reflectance. However, it may be possible that the feedback from the spatially-extended target distribution provides a resonant and coherent optical cavity if the geometric and physical constraints noted above are overcome. In any case, the feedback can be generated using spontaneously emitted light that is produced from a non-oscillator gain medium.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 25, 2014
    Assignee: Cymer, LLC
    Inventors: Yezheng Tao, Robert Jay Rafac, Igor V. Fomenkov, Daniel J. W. Brown
  • Patent number: 8653492
    Abstract: Techniques for generating EUV light include directing a first pulse of radiation toward a target material droplet to form a modified droplet, the first pulse of radiation having an energy sufficient to alter a shape of the target material droplet; directing a second pulse of radiation toward the modified droplet to form an absorption material, the second pulse of radiation having an energy sufficient to change a property of the modified droplet, the property being related to absorption of radiation; and directing an amplified light beam toward the absorption material, the amplified light beam having an energy sufficient to convert at least a portion of the absorption material into extreme ultraviolet (EUV) light.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: February 18, 2014
    Assignee: Cymer, LLC
    Inventors: Robert J. Rafac, Yezheng Tao