Patents by Inventor Yi-Yang Lei
Yi-Yang Lei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11270921Abstract: A semiconductor package includes semiconductor dies, an encapsulant, a high-modulus dielectric layer and a redistribution structure. The encapsulant encapsulates the semiconductor dies and is made of a first material. The high-modulus dielectric layer extends on the encapsulant and the semiconductor dies. The high-modulus dielectric layer is made of a second material. The redistribution structure extends on the high-modulus dielectric layer. The redistribution structure includes conductive patterns embedded in at least a pair of dielectric layers. The dielectric layers of the pair are made of a third material. The elastic modulus of the first material is higher than the elastic modulus of the third material. The elastic modulus of the second material is higher than the elastic modulus of the third material.Type: GrantFiled: May 8, 2020Date of Patent: March 8, 2022Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Hao-Cheng Hou, Chien-Hsun Lee, Chung-Shi Liu, Jung-Wei Cheng, Tsung-Ding Wang, Yi-Yang Lei
-
Publication number: 20210242100Abstract: A semiconductor package includes semiconductor dies, an encapsulant, a high-modulus dielectric layer and a redistribution structure. The encapsulant encapsulates the semiconductor dies and is made of a first material. The high-modulus dielectric layer extends on the encapsulant and the semiconductor dies. The high-modulus dielectric layer is made of a second material. The redistribution structure extends on the high-modulus dielectric layer. The redistribution structure includes conductive patterns embedded in at least a pair of dielectric layers. The dielectric layers of the pair are made of a third material. The elastic modulus of the first material is higher than the elastic modulus of the third material. The elastic modulus of the second material is higher than the elastic modulus of the third material.Type: ApplicationFiled: May 8, 2020Publication date: August 5, 2021Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Hao-Cheng Hou, Chien-Hsun Lee, Chung-Shi Liu, Jung-Wei Cheng, Tsung-Ding Wang, Yi-Yang Lei
-
Publication number: 20210242159Abstract: A package structure including at least one semiconductor die and a redistribution structure is provided. The semiconductor die is laterally encapsulated by an encapsulant, and the redistribution structure is disposed on the semiconductor die and the encapsulant and electrically connected with the semiconductor die. The redistribution structure includes signal lines and a pair of repair lines. The signal lines include a pair of first signal lines located at a first level, and each first signal line of the pair of first signal lines has a break that split each first signal line into separate first and second fragments. The pair of repair lines is located above the pair of first signal lines and located right above the break. Opposite ending portions of each repair line are respectively connected with the first and second fragments with each repair line covering the break in each first signal line.Type: ApplicationFiled: June 10, 2020Publication date: August 5, 2021Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Po-Yuan Teng, Hao-Yi Tsai, Kuo-Lung Pan, Sen-Kuei Hsu, Tin-Hao Kuo, Yi-Yang Lei, Ying-Cheng Tseng, Chi-Hui Lai
-
Patent number: 11069652Abstract: A method of manufacturing a semiconductor structure is provided. The method includes providing a first substrate including a plurality of conductive bumps disposed over the first substrate; providing a second substrate; disposing a patterned adhesive over the first substrate, wherein at least a portion of the plurality of conductive bumps is exposed through the patterned adhesive; bonding the first substrate with the second substrate; and singulating a chip from the first substrate.Type: GrantFiled: January 14, 2020Date of Patent: July 20, 2021Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.Inventors: Alexander Kalnitsky, Yi-Yang Lei, Hsi-Ching Wang, Cheng-Yu Kuo, Tsung Lung Huang, Ching-Hua Hsieh, Chung-Shi Liu, Chen-Hua Yu, Chin-Yu Ku, De-Dui Liao, Kuo-Chio Liu, Kai-Di Wu, Kuo-Pin Chang, Sheng-Pin Yang, Isaac Huang
-
Publication number: 20210098395Abstract: A package structure includes a semiconductor die, an insulating encapsulant, a first redistribution layer, a second redistribution layer, antenna elements and a first insulating film. The insulating encapsulant is encapsulating the at least one semiconductor die, the insulating encapsulant has a first surface and a second surface opposite to the first surface. The first redistribution layer is disposed on the first surface of the insulating encapsulant. The second redistribution layer is disposed on the second surface of the insulating encapsulant. The antenna elements are located over the second redistribution layer. The first insulating film is disposed in between the second redistribution layer and the antenna elements, wherein the first insulating film comprises a resin rich region and a filler rich region, the resin rich region is located in between the filler rich region and the second redistribution layer and separating the filler rich region from the second redistribution layer.Type: ApplicationFiled: December 14, 2020Publication date: April 1, 2021Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Cheng-Yu Kuo, Ching-Hua Hsieh, Chen-Hua Yu, Chung-Shi Liu, Yi-Yang Lei, Wei-Jie Huang
-
Patent number: 10867939Abstract: A package structure includes a semiconductor die, an insulating encapsulant, a first redistribution layer, a second redistribution layer, antenna elements and a first insulating film. The insulating encapsulant is encapsulating the at least one semiconductor die, the insulating encapsulant has a first surface and a second surface opposite to the first surface. The first redistribution layer is disposed on the first surface of the insulating encapsulant. The second redistribution layer is disposed on the second surface of the insulating encapsulant. The antenna elements are located over the second redistribution layer. The first insulating film is disposed in between the second redistribution layer and the antenna elements, wherein the first insulating film comprises a resin rich region and a filler rich region, the resin rich region is located in between the filler rich region and the second redistribution layer and separating the filler rich region from the second redistribution layer.Type: GrantFiled: June 14, 2019Date of Patent: December 15, 2020Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Cheng-Yu Kuo, Ching-Hua Hsieh, Chen-Hua Yu, Chung-Shi Liu, Yi-Yang Lei, Wei-Jie Huang
-
Patent number: 10790252Abstract: Semiconductor devices, methods of manufacture thereof, and packaged semiconductor devices are disclosed. In one embodiment, a method of manufacturing a semiconductor device includes forming a plurality of contact pads over a substrate, and forming an insulating material over the plurality of contact pads and the substrate. The insulating material is patterned to form an opening over each of the plurality of contact pads, and the plurality of contact pads is cleaned. The method includes forming an under-ball metallization (UBM) structure over the plurality of contact pads and portions of the insulating material. Cleaning the plurality of contact pads recesses a top surface of each of the plurality of contact pads.Type: GrantFiled: July 31, 2018Date of Patent: September 29, 2020Assignee: Taiwan Semiconductor Manufacturing CompanyInventors: Yi-Yang Lei, Szu-Yu Yeh, Yu-Ren Chen, Hung-Jui Kuo, Chung-Shi Liu
-
Publication number: 20200168568Abstract: A package structure includes a semiconductor die, an insulating encapsulant, a first redistribution layer, a second redistribution layer, antenna elements and a first insulating film. The insulating encapsulant is encapsulating the at least one semiconductor die, the insulating encapsulant has a first surface and a second surface opposite to the first surface. The first redistribution layer is disposed on the first surface of the insulating encapsulant. The second redistribution layer is disposed on the second surface of the insulating encapsulant. The antenna elements are located over the second redistribution layer. The first insulating film is disposed in between the second redistribution layer and the antenna elements, wherein the first insulating film comprises a resin rich region and a filler rich region, the resin rich region is located in between the filler rich region and the second redistribution layer and separating the filler rich region from the second redistribution layer.Type: ApplicationFiled: June 14, 2019Publication date: May 28, 2020Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Cheng-Yu Kuo, Ching-Hua Hsieh, Chen-Hua Yu, Chung-Shi Liu, Yi-Yang Lei, Wei-Jie Huang
-
Publication number: 20200152599Abstract: A method of manufacturing a semiconductor structure is provided. The method includes providing a first substrate including a plurality of conductive bumps disposed over the first substrate; providing a second substrate; disposing a patterned adhesive over the first substrate, wherein at least a portion of the plurality of conductive bumps is exposed through the patterned adhesive; bonding the first substrate with the second substrate; and singulating a chip from the first substrate.Type: ApplicationFiled: January 14, 2020Publication date: May 14, 2020Inventors: ALEXANDER KALNITSKY, YI-YANG LEI, HSI-CHING WANG, CHENG-YU KUO, TSUNG LUNG HUANG, CHING-HUA HSIEH, CHUNG-SHI LIU, CHEN-HUA YU, CHIN-YU KU, DE-DUI LIAO, KUO-CHIO LIU, KAI-DI WU, KUO-PIN CHANG, SHENG-PIN YANG, ISAAC HUANG
-
Publication number: 20200051949Abstract: A method includes encapsulating a device in an encapsulating material, planarizing the encapsulating material and the device, and forming a conductive feature over the encapsulating material and the device. The formation of the conductive feature includes depositing a first conductive material to from a first seed layer, depositing a second conductive material different from the first conductive material over the first seed layer to form a second seed layer, plating a metal region over the second seed layer, performing a first etching on the second seed layer, performing a second etching on the first seed layer, and after the first seed layer is etched, performing a third etching on the second seed layer and the metal region.Type: ApplicationFiled: October 17, 2019Publication date: February 13, 2020Inventors: Hui-Jung Tsai, Yun Chen Hsieh, Jyun-Siang Peng, Tai-Min Chang, Yi-Yang Lei, Hung-Jui Kuo, Chen-Hua Yu
-
Patent number: 10535629Abstract: A method of manufacturing a semiconductor structure includes receiving a first substrate including an IMD layer disposed over the first substrate and a plurality of conductive bumps disposed in the IMD layer; receiving a second substrate; disposing a patterned adhesive over the first substrate, wherein at least a portion of the IMD layer is exposed through the patterned adhesive; and bonding the first substrate with the second substrate, wherein a top surface of the at least portion of the IMD layer is exposed through the patterned adhesive after bonding the first substrate with the second substrate.Type: GrantFiled: December 21, 2018Date of Patent: January 14, 2020Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.Inventors: Alexander Kalnitsky, Yi-Yang Lei, Hsi-Ching Wang, Cheng-Yu Kuo, Tsung Lung Huang, Ching-Hua Hsieh, Chung-Shi Liu, Chen-Hua Yu, Chin-Yu Ku, De-Dui Liao, Kuo-Chio Liu, Kai-Di Wu, Kuo-Pin Chang, Sheng-Pin Yang, Isaac Huang
-
Publication number: 20200013750Abstract: A method includes encapsulating a device in an encapsulating material, planarizing the encapsulating material and the device, and forming a conductive feature over the encapsulating material and the device. The formation of the conductive feature includes depositing a first conductive material to from a first seed layer, depositing a second conductive material different from the first conductive material over the first seed layer to form a second seed layer, plating a metal region over the second seed layer, performing a first etching on the second seed layer, performing a second etching on the first seed layer, and after the first seed layer is etched, performing a third etching on the second seed layer and the metal region.Type: ApplicationFiled: September 19, 2019Publication date: January 9, 2020Inventors: Hui-Jung Tsai, Yun Chen Hsieh, Jyun-Siang Peng, Tai-Min Chang, Yi-Yang Lei, Hung-Jui Kuo, Chen-Hua Yu
-
Patent number: 10522501Abstract: A method includes encapsulating a device in an encapsulating material, planarizing the encapsulating material and the device, and forming a conductive feature over the encapsulating material and the device. The formation of the conductive feature includes depositing a first conductive material to from a first seed layer, depositing a second conductive material different from the first conductive material over the first seed layer to form a second seed layer, plating a metal region over the second seed layer, performing a first etching on the second seed layer, performing a second etching on the first seed layer, and after the first seed layer is etched, performing a third etching on the second seed layer and the metal region.Type: GrantFiled: July 6, 2018Date of Patent: December 31, 2019Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Hui-Jung Tsai, Yun Chen Hsieh, Jyun-Siang Peng, Tai-Min Chang, Yi-Yang Lei, Hung-Jui Kuo, Chen-Hua Yu
-
Publication number: 20190381630Abstract: A polishing pad, a polishing apparatus and a method of manufacturing a semiconductor package using the same are provided. In some embodiments, a polishing pad includes a sub-pad portion and a top pad portion over the sub-pad portion. The top pad portion includes a plurality of grooves having a first width and a plurality of openings having a second width different from the first width, and the openings are located in a center zone of the polishing pad.Type: ApplicationFiled: June 15, 2018Publication date: December 19, 2019Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Kuan-Cheng Wang, Ching-Hua Hsieh, Yi-Yang Lei
-
Publication number: 20190157240Abstract: A method includes encapsulating a device in an encapsulating material, planarizing the encapsulating material and the device, and forming a conductive feature over the encapsulating material and the device. The formation of the conductive feature includes depositing a first conductive material to from a first seed layer, depositing a second conductive material different from the first conductive material over the first seed layer to form a second seed layer, plating a metal region over the second seed layer, performing a first etching on the second seed layer, performing a second etching on the first seed layer, and after the first seed layer is etched, performing a third etching on the second seed layer and the metal region.Type: ApplicationFiled: July 6, 2018Publication date: May 23, 2019Inventors: Hui-Jung Tsai, Yun Chen Hsieh, Jyun-Siang Peng, Tai-Min Chang, Yi-Yang Lei, Hung-Jui Kuo, Chen-Hua Yu
-
Patent number: 10269747Abstract: Semiconductor devices, methods of manufacture thereof, and packaged semiconductor devices are disclosed. In one embodiment, a method of manufacturing a semiconductor device includes forming a plurality of contact pads over a substrate, and forming an insulating material over the plurality of contact pads and the substrate. The insulating material is patterned to form an opening over each of the plurality of contact pads, and the plurality of contact pads is cleaned. The method includes forming an under-ball metallization (UBM) structure over the plurality of contact pads and portions of the insulating material. Cleaning the plurality of contact pads recesses a top surface of each of the plurality of contact pads.Type: GrantFiled: October 25, 2012Date of Patent: April 23, 2019Assignee: Taiwan Semiconductor Manufacturing CompanyInventors: Yi-Yang Lei, Szu-Yu Yeh, Yu-Ren Chen, Hung-Jui Kuo, Chung-Shi Liu
-
Publication number: 20190115313Abstract: A method of manufacturing a semiconductor structure includes receiving a first substrate including an IMD layer disposed over the first substrate and a plurality of conductive bumps disposed in the IMD layer; receiving a second substrate; disposing a patterned adhesive over the first substrate, wherein at least a portion of the IMD layer is exposed through the patterned adhesive; and bonding the first substrate with the second substrate, wherein a top surface of the at least portion of the IMD layer is exposed through the patterned adhesive after bonding the first substrate with the second substrate.Type: ApplicationFiled: December 21, 2018Publication date: April 18, 2019Inventors: ALEXANDER KALNITSKY, YI-YANG LEI, HSI-CHING WANG, CHENG-YU KUO, TSUNG LUNG HUANG, CHING-HUA HSIEH, CHUNG-SHI LIU, CHEN-HUA YU, CHIN-YU KU, DE-DUI LIAO, KUO-CHIO LIU, KAI-DI WU, KUO-PIN CHANG, SHENG-PIN YANG, ISAAC HUANG
-
Patent number: 10163849Abstract: A method of manufacturing a semiconductor structure, including receiving a first substrate including a plurality of conductive bumps disposed over the first substrate; receiving a second substrate; disposing an adhesive over the first substrate; removing a portion of the adhesive to expose at least one of the plurality of conductive bumps; and bonding the first substrate with the second substrate.Type: GrantFiled: October 23, 2017Date of Patent: December 25, 2018Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.Inventors: Alexander Kalnitsky, Yi-Yang Lei, Hsi-Ching Wang, Cheng-Yu Kuo, Tsung Lung Huang, Ching-Hua Hsieh, Chung-Shi Liu, Chen-Hua Yu, Chin-Yu Ku, De-Dui Liao, Kuo-Chio Liu, Kai-Di Wu, Kuo-Pin Chang, Sheng-Pin Yang, Isaac Huang
-
Publication number: 20180337155Abstract: Semiconductor devices, methods of manufacture thereof, and packaged semiconductor devices are disclosed. In one embodiment, a method of manufacturing a semiconductor device includes forming a plurality of contact pads over a substrate, and forming an insulating material over the plurality of contact pads and the substrate. The insulating material is patterned to form an opening over each of the plurality of contact pads, and the plurality of contact pads is cleaned. The method includes forming an under-ball metallization (UBM) structure over the plurality of contact pads and portions of the insulating material. Cleaning the plurality of contact pads recesses a top surface of each of the plurality of contact pads.Type: ApplicationFiled: July 31, 2018Publication date: November 22, 2018Inventors: Yi-Yang Lei, Szu-Yu Yeh, Yu-Ren Chen, Hung-Jui Kuo, Chung-Shi Liu
-
Publication number: 20180047701Abstract: A method of manufacturing a semiconductor structure, including receiving a first substrate including a plurality of conductive bumps disposed over the first substrate; receiving a second substrate; disposing an adhesive over the first substrate; removing a portion of the adhesive to expose at least one of the plurality of conductive bumps; and bonding the first substrate with the second substrate.Type: ApplicationFiled: October 23, 2017Publication date: February 15, 2018Inventors: ALEXANDER KALNITSKY, YI-YANG LEI, HSI-CHING WANG, CHENG-YU KUO, TSUNG LUNG HUANG, CHING-HUA HSIEH, CHUNG-SHI LIU, CHEN-HUA YU, CHIN-YU KU, DE-DUI LIAO, KUO-CHIO LIU, KAI-DI WU, KUO-PIN CHANG, SHENG-PIN YANG, ISAAC HUANG