Patents by Inventor Ying-Yu Hsu

Ying-Yu Hsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9619409
    Abstract: The present disclosure relates to an interface comprising a memory controller and a memory unit coupled to the memory controller and configured to communicate with the memory controller through a first signal and a second signal. The interface further comprises a determination unit comprising judgment logic configured to send a control signal configured to align the first signal with the second signal. The memory controller further comprises a digitally-controlled delay line (DCDL) coupled to the determination unit and configured to receive the control signal, wherein the determination unit instructs the DCDL to adjust a delay of the first signal to align the first signal with the second signal. The memory controller further comprises a value register configured to store a signal delay value corresponding to alignment between the first signal with the second signal which is contained within the control signal. Other devices and methods are disclosed.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: April 11, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ying-Yu Hsu, Chien-Chun Tsai, Wen-Hung Huang
  • Patent number: 9564900
    Abstract: A device is disclosed that includes a driver circuit and a control circuit. The driver circuit is configured to provide an output signal according to an input signal, and operated with a first voltage and a second voltage. The driver circuit includes a pull up unit and a pull down unit configured to pull up and pull down a voltage level of the output signal, respectively. The control circuit is configured to selectively enable one of the pull up unit and the pull down unit according to the input signal, so as to adjust the voltage level of the output signal. The control circuit is further configured to drive the enabled one of the pull up unit and the pull down unit in a voltage mode or a current mode selectively according to the voltage level of the output signal, the first voltage and the second voltage.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: February 7, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ying-Yu Hsu, Chien-Chun Tsai, Yu-Nan Shih
  • Publication number: 20170032072
    Abstract: A stacked chip layout includes a central processing chip; and a first active circuit block over the central processing chip. The stacked chip layout further includes a second active circuit block over the first active circuit. A center of the second active circuit block is offset from a center of the first active circuit block, the second active circuit block overlaps the first active circuit block in a partial overlap area, and the second active circuit block exposes a portion of the first active circuit block. The stacked chip layout further includes a local conductive element electrically connecting the first active circuit block to the second active circuit block. The local conductive element is within the partial overlap area.
    Type: Application
    Filed: October 12, 2016
    Publication date: February 2, 2017
    Inventor: Ying-Yu HSU
  • Patent number: 9503061
    Abstract: A system and method is disclosed for adaptively adjusting a duty cycle of a signal between a first and second chip in a 3D architecture/stack for adaptively calibrating a chip in a 3D architecture/stack. In one embodiment, the system includes a first chip and a second chip located within the 3D chip stack, wherein the first chip generates a calibration signal, the second chip receives the calibration signal and compares it to a reference signal to generate a comparison signal that further compared to a reference duty signal to generate a reference duty comparison signal, that is then provided to the first chip to generate a drive signal that adjusts a duty cycle of the calibration signal.
    Type: Grant
    Filed: January 4, 2016
    Date of Patent: November 22, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ying-Yu Hsu, Ruey-Bin Sheen, Chih-Hsien Chang
  • Patent number: 9495500
    Abstract: A method of making a stacked chip layout includes placing a first active circuit block over a central processing chip having a first area, the first active circuit block having a second area less than the first area. The method further includes placing a second active circuit block over the first active circuit block, the second active circuit block having a third area less than the first area, wherein the second active circuit block partially overlaps the first active circuit block and exposes a portion of the first active circuit block. The method further includes placing a third active circuit block over the second active circuit block wherein the third active circuit block partially overlaps at least one of the first active circuit block or the second active circuit block, and the third active circuit block exposes at least a portion of the first and second active circuit blocks.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: November 15, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Ying-Yu Hsu
  • Publication number: 20160308533
    Abstract: A device is disclosed that includes a driver circuit and a control circuit. The driver circuit is configured to provide an output signal according to an input signal, and operated with a first voltage and a second voltage. The driver circuit includes a pull up unit and a pull down unit configured to pull up and pull down a voltage level of the output signal, respectively. The control circuit is configured to selectively enable one of the pull up unit and the pull down unit according to the input signal, so as to adjust the voltage level of the output signal. The control circuit is further configured to drive the enabled one of the pull up unit and the pull down unit in a voltage mode or a current mode selectively according to the voltage level of the output signal, the first voltage and the second voltage.
    Type: Application
    Filed: April 16, 2015
    Publication date: October 20, 2016
    Inventors: Ying-Yu HSU, Chien-Chun TSAI, Yu-Nan SHIH
  • Publication number: 20160254260
    Abstract: A semiconductor device for simultaneous operation at two temperature ranges includes a substrate, a first transistor, and a second transistor. The substrate has a first active region and a second active region. The first transistor includes a plurality of gate stacks disposed in the first active region. The second transistor includes a plurality of gate stacks disposed in the second active region. A ratio of the number of the gate stacks of the second transistor to an area size of the second active region is less than a ratio of the number of the gate stacks of the first transistor to an area size of the first active region.
    Type: Application
    Filed: February 26, 2015
    Publication date: September 1, 2016
    Inventors: RUEY-BIN SHEEN, CHAO-CHIEH LI, YING-YU HSU
  • Patent number: 9419615
    Abstract: A circuit comprises a voltage supply node, a reference voltage node, and a plurality of transistors coupled with the voltage supply node and the reference voltage node. The circuit also comprises a circuit input, a first delay element and a second delay element. The first delay element is coupled with the circuit input and one transistor of the plurality of transistors. The second delay element is coupled with the circuit input and a second transistor of the plurality of transistors. The circuit further comprises a circuit output coupled with the first transistor of the plurality of transistors and the second transistor of the plurality of transistors. The circuit additionally comprises a bias generator coupled with the circuit output, the first transistor of the plurality of transistors and the second transistor of the plurality of transistors.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: August 16, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ying-Yu Hsu, Chien-Chun Tsai
  • Publication number: 20160211848
    Abstract: A circuit comprises a voltage supply node, a reference voltage node, and a plurality of transistors coupled with the voltage supply node and the reference voltage node. The circuit also comprises a circuit input, a first delay element and a second delay element. The first delay element is coupled with the circuit input and one transistor of the plurality of transistors. The second delay element is coupled with the circuit input and a second transistor of the plurality of transistors. The circuit further comprises a circuit output coupled with the first transistor of the plurality of transistors and the second transistor of the plurality of transistors. The circuit additionally comprises a bias generator coupled with the circuit output, the first transistor of the plurality of transistors and the second transistor of the plurality of transistors.
    Type: Application
    Filed: January 20, 2015
    Publication date: July 21, 2016
    Inventors: Ying-Yu HSU, Chien-Chun TSAI
  • Patent number: 9363115
    Abstract: Systems and methods are disclosed for aligning multiple data bits by adjusting the timing of input lines for those data bits. Embodiments include a hierarchical structure for comparing the timing of multiple sets of bits. Other embodiments include aligning data bits from multiple chips in a 3D die stacking architecture.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: June 7, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ying-Yu Hsu, Ruey-Bin Sheen, Shih-Hung Lan, Chih-Hsien Chang
  • Publication number: 20160131708
    Abstract: A system for capturing an eye diagram is disclosed.
    Type: Application
    Filed: January 19, 2016
    Publication date: May 12, 2016
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wen-Hung HUANG, Chien-Chun TSAI, Ying-Yu HSU
  • Publication number: 20160118960
    Abstract: A system and method is disclosed for adaptively adjusting a duty cycle of a signal between a first and second chip in a 3D architecture/stack for adaptively calibrating a chip in a 3D architecture/stack. In one embodiment, the system includes a first chip and a second chip located within the 3D chip stack, wherein the first chip generates a calibration signal, the second chip receives the calibration signal and compares it to a reference signal to generate a comparison signal that further compared to a reference duty signal to generate a reference duty comparison signal, that is then provided to the first chip to generate a drive signal that adjusts a duty cycle of the calibration signal.
    Type: Application
    Filed: January 4, 2016
    Publication date: April 28, 2016
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ying-Yu HSU, Ruey-Bin SHEEN, Chih-Hsien CHANG
  • Patent number: 9267988
    Abstract: An eye diagram capture device includes a delay line arranged to receive a digital signal and output time delayed version of the digital signal. An edge detection circuit is arranged to receive the digital signal and the time delayed version of the digital signal, the edge detection circuit operating to output a signal corresponding to a logical value of the digital signal received coincident with an edge of the time delay version of the digital signal. A voltage comparator is arranged to receive the digital signal and a reference voltage. The voltage comparator operates to output a first signal when the a voltage of the digital signal and the reference voltage are equal to each other.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: February 23, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wen-Hung Huang, Chien-Chun Tsai, Ying-Yu Hsu
  • Publication number: 20160004807
    Abstract: A method of making a stacked chip layout includes placing a first active circuit block over a central processing chip having a first area, the first active circuit block having a second area less than the first area. The method further includes placing a second active circuit block over the first active circuit block, the second active circuit block having a third area less than the first area, wherein the second active circuit block partially overlaps the first active circuit block and exposes a portion of the first active circuit block. The method further includes placing a third active circuit block over the second active circuit block wherein the third active circuit block partially overlaps at least one of the first active circuit block or the second active circuit block, and the third active circuit block exposes at least a portion of the first and second active circuit blocks.
    Type: Application
    Filed: September 16, 2015
    Publication date: January 7, 2016
    Inventor: Ying-Yu HSU
  • Patent number: 9231585
    Abstract: A system and method is disclosed for adaptively adjusting a driving strength of a signal between a first and second chip in a 3D architecture/stack. This may be used to adaptively calibrate a chip in a 3D architecture/stack. The system may include a transmission circuit on one chip and a receiver circuit on another chip. Alternatively, the system may include a transmission and receiver circuit on just one chip.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: January 5, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ying-Yu Hsu, Ruey-Bin Sheen, Chih-Hsien Chang
  • Patent number: 9159716
    Abstract: A stacked chip layout includes a central processing chip has a first area and a first active circuit block over the central processing chip, the first active circuit block has a second area. The stacked chip layout further includes a second active circuit block over the first active circuit block, the second active circuit block has a third area, the second active circuit block partially overlaps the first active circuit block and exposes a portion of the first active circuit block. The stacked chip layout further includes a third active circuit block over the second active circuit block, the third active circuit block has a fourth area, the third active circuit block partially overlaps at least one of the first active circuit block or the second active circuit block, and the third active circuit block exposes a portion of the first active circuit block and the second active circuit block.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: October 13, 2015
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Ying-Yu Hsu
  • Patent number: 9099990
    Abstract: A high-speed bus interface with an adaptive swing driver. A high speed interface includes a transmitter and a receiver coupled via a bus. The transmitter has an adaptive swing driver and a voltage-regulating-module (VRM). The adaptive swing driver includes a post-driver and a pre-driver. The post-driver provides an adaptive swing output with a dedicated adaptive voltage power supply (VDDQ) and transition emphasis driving capacity with an internal logic voltage supply (VDD). The pre-driver provides the transition emphasis driving capacity with a pull-up and a pull-down signal path to the post-driver. The voltage-regulating-module is configured to supply signal to the adaptive swing driver. The receiver includes a comparator and a bit-error-rate detector. The comparator amplifies the adaptive swing output received from the transmitter via a bus, while the bit-error-rate detector diagnoses the amplified adaptive swing output received from the comparator.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: August 4, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ying-Yu Hsu, Yung-Chow Peng, Min-Shueh Yuan, Chih-Hsien Chang
  • Publication number: 20150061110
    Abstract: A stacked chip layout includes a central processing chip has a first area and a first active circuit block over the central processing chip, the first active circuit block has a second area. The stacked chip layout further includes a second active circuit block over the first active circuit block, the second active circuit block has a third area, the second active circuit block partially overlaps the first active circuit block and exposes a portion of the first active circuit block. The stacked chip layout further includes a third active circuit block over the second active circuit block, the third active circuit block has a fourth area, the third active circuit block partially overlaps at least one of the first active circuit block or the second active circuit block, and the third active circuit block exposes a portion of the first active circuit block and the second active circuit block.
    Type: Application
    Filed: August 30, 2013
    Publication date: March 5, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Ying-Yu HSU
  • Publication number: 20150002194
    Abstract: A system and method is disclosed for adaptively adjusting a driving strength of a signal between a first and second chip in a 3D architecture/stack. This may be used to adaptively calibrate a chip in a 3D architecture/stack. The system may include a transmission circuit on one chip and a receiver circuit on another chip. Alternatively, the system may include a transmission and receiver circuit on just one chip.
    Type: Application
    Filed: September 18, 2014
    Publication date: January 1, 2015
    Inventors: Ying-Yu HSU, Ruey-Bin SHEEN, Chih-Hsien CHANG
  • Patent number: 8866508
    Abstract: A system and method is disclosed for adaptively adjusting a driving strength of a signal between a first and second chip in a 3D architecture/stack. This may be used to adaptively calibrate a chip in a 3D architecture/stack. The system may include a transmission circuit on one chip and a receiver circuit on another chip. Alternatively, the system may include a transmission and receiver circuit on just one chip.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: October 21, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ying-Yu Hsu, Ruey-Bin Sheen, Chih-Hsien Chang