Patents by Inventor Yonghong Guo

Yonghong Guo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240120394
    Abstract: A semiconductor device includes a semiconductor substrate, an epitaxial layer disposed on the semiconductor substrate, a cell zone including multiple unit cells disposed in the epitaxial layer opposite to the semiconductor substrate, a transition zone having a doped region and surrounding the cell zone, a source electrode unit disposed on the epitaxial layer opposite to the semiconductor substrate, and multiple gate electrode units. Each unit cell includes a well region, a source region disposed in the well region, and a well contact region extending through the source region to contact the well region. A method for manufacturing the semiconductor device is also disclosed.
    Type: Application
    Filed: December 20, 2023
    Publication date: April 11, 2024
    Inventors: Yonghong TAO, Wenbi CAI, Zhigao PENG, Lijun LI, Yuanxu GUO
  • Patent number: 11742630
    Abstract: A structured light system may include a semiconductor laser to emit light and a diffractive optical element to diffract the light such that one or more diffracted orders of the light, associated with forming a structured light pattern, are transmitted by the diffractive optical element. The diffractive optical element may be arranged such that the light is to be incident on the diffractive optical element at a substantially non-normal angle of incidence. The substantially non-normal angle of incidence may be designed to cause the diffractive optical element to transmit a zero-order beam of the light outside of a field of view associated with the diffractive optical element.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: August 29, 2023
    Assignee: Lumentum Operations LLC
    Inventors: Vincent V. Wong, Yonghong Guo, Jay A. Skidmore
  • Publication number: 20230258781
    Abstract: Embodiments of the disclosure provide for a LiDAR system. The LiDAR system may generate a first FOV that is large and has rough resolution and a second FOV that is smaller and has a finer resolution. For an area of importance, such as along the horizon where pedestrians, vehicles, or other objects may be located, the second FOV with the finer resolution may be used. Using fine resolution for the area of importance may achieve a higher-degree of accuracy/safety in terms of autonomous navigation decision-making than if coarse resolution is used. Because the use of fine resolution is limited to a relatively small area, a reasonably sized photodetector and laser power may still be used to generate a long distance, high-resolution point-cloud.
    Type: Application
    Filed: February 16, 2022
    Publication date: August 17, 2023
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Yonghong GUO, Youmin WANG, Yue LU
  • Publication number: 20230258806
    Abstract: Embodiments of the disclosure provide for a LiDAR system. The LiDAR system may dynamically select a first FOV of a far-field environment to be scanned at a rough resolution and a second FOV including important information, as indicated based on object data from a previous scanning procedure, to be scanned at a fine resolution. For example, an area-of-interest, such as along the horizon where pedestrians, vehicles, or other objects may be located, may be scanned with the finer resolution. Using fine resolution for the area-of-interest may achieve a higher-degree of accuracy/safety in terms of autonomous navigation decision-making than if coarse resolution is used. Because the use of fine resolution is limited to a relatively small area, a reasonably sized photodetector and laser power may still be used to generate a long distance, high-resolution point-cloud.
    Type: Application
    Filed: February 22, 2022
    Publication date: August 17, 2023
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Yonghong GUO, Youmin WANG, Yue LU
  • Patent number: 11681033
    Abstract: Disclosed herein are techniques for improving the light collection efficiency in coaxial LiDAR systems. A coaxial LiDAR system includes a photodetector, a first polarization beam splitter configured to receive a returned light beam including a first linear polarization component and a second linear polarization component and direct the different linear polarization components to different respective directions, a polarization beam combiner configured to transmit the first linear polarization component from the first polarization beam splitter to the photodetector, a non-reciprocal polarization rotator configured to transmit the second linear polarization component from the first polarization beam splitter, and a second polarization beam splitter configured to reflect the second linear polarization component from the non-reciprocal polarization rotator towards the polarization beam combiner.
    Type: Grant
    Filed: May 7, 2020
    Date of Patent: June 20, 2023
    Assignee: Beijing Voyager Technology Co., Ltd.
    Inventors: Youmin Wang, Yonghong Guo, Yue Lu
  • Patent number: 11619717
    Abstract: Embodiments of the disclosure provide a receiver in an optical sensing system. The exemplary receiver includes a movable detector configured to receive optical signals reflected or scattered from an object scanned by the optical sensing system. The receiver further includes an actuator configured to move the movable detector. The receiver also includes a controller configured to determine a plurality of target positions of the movable detector for receiving the optical signals. The controller is further configured to control the actuator to move the movable detector to the plurality target positions according to a movement pattern.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: April 4, 2023
    Assignee: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Chao Wang, Lingkai Kong, Yonghong Guo, Wenbin Zhu
  • Patent number: 11592531
    Abstract: Embodiments of the disclosure provide receivers for light detection and ranging (LiDAR). In an example, a receiver includes a beam reflecting unit comprising a plurality of digital micromirror devices (DMDs). The beam reflecting unit is configured to receive an input laser beam returned from an object being scanned by the LiDAR and reflect the input laser beam by at least one DMD selectively switched to an “ON” state at an operation angle to form an output laser beam towards a detector. The detector is configured to receive the output laser beam.
    Type: Grant
    Filed: June 9, 2020
    Date of Patent: February 28, 2023
    Assignee: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Chao Wang, Lingkai Kong, Yonghong Guo, Wenbin Zhu
  • Publication number: 20230049679
    Abstract: In some examples, an apparatus is provided. The apparatus comprises: an illuminator having an adjustable field of view (FOV), the FOV being adjusted based on setting a direction of propagation of light to illuminate the FOV; a light detector; and a controller configured to: control the illuminator to project the light along a first direction of propagation to illuminate a first FOV; control the illuminator to project the light along a second direction of propagation to illuminate a second FOV; detect, using the light detector, reflected light received from the first FOV and the second FOV to generate one or more detection outputs for a combined FOV including the first FOV and the second FOV; and perform at least one of a detection operation or a ranging operation of an object in the combined FOV based on the one or more detection outputs.
    Type: Application
    Filed: August 4, 2021
    Publication date: February 16, 2023
    Inventors: Chao Wang, Yonghong Guo, Wenbin Zhu, Lingkai Kong
  • Publication number: 20230037359
    Abstract: Embodiments of the disclosure provide receivers for light detection and ranging (LiDAR). In an example, a receiver includes an acousto-optical (AO) beam deflecting unit configured to receive an input laser beam and a controller configured to cause an acoustic signal to be applied to the AO beam deflecting unit to deflect the input laser beam for a deflection angle and form an output laser beam towards a beam sensor. The deflection angle between the input and the output laser beams is nonzero.
    Type: Application
    Filed: October 13, 2022
    Publication date: February 9, 2023
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Chao Wang, Lingkai Kong, Yonghong Guo, Wenbin Zhu
  • Patent number: 11550033
    Abstract: Embodiments of the disclosure provide receivers for light detection and ranging (LiDAR). In an example, a receiver includes a beam converging device and an EO beam deflecting unit. The beam converging device is configured to receive a laser beam from an object being scanned by the LiDAR and form an input laser beam. The EO beam deflecting unit is configured to generate a non-uniform medium having at least one of a refractive index gradient or a diffraction grating, receive the input laser beam such that the input laser beam impinges upon the non-uniform medium, and form an output laser beam towards a photosensor. An angle between the input and the output laser beams is nonzero.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: January 10, 2023
    Assignee: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Chao Wang, Lingkai Kong, Yonghong Guo, Wenbin Zhu
  • Patent number: 11506756
    Abstract: Embodiments of the disclosure provide receivers for light detection and ranging (LiDAR). In an example, a receiver includes a beam reflecting unit having a plurality of digital micromirror devices (DMDs). The beam reflecting unit is configured to receive an input light beam returned from an object being scanned by the LiDAR, reflect a signal in the input light beam by at least one first DMD selectively switched to an “ON” state at an operation angle to form an output signal towards a detector, reflect a noise signal in the input light beam away from the detector by at least one second DMD selectively switched to an “OFF” state at a non-operation angle. The receiver also includes the detector configured to receive the output signal.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: November 22, 2022
    Assignee: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Chao Wang, Lingkai Kong, Yonghong Guo, Wenbin Zhu
  • Patent number: 11500073
    Abstract: Embodiments of the disclosure provide receivers for light detection and ranging (LiDAR). In an example, a receiver includes a beam converging device, an AO beam deflecting unit, and a beam sensor. The beam converging device is configured to receive a laser beam from an object being scanned by the LiDAR and form an input laser beam. The AO beam deflecting unit is configured to generate a diffraction grating along a propagating direction of an acoustic wave, receive the input laser beam such that the input laser beam impinges upon the diffraction grating, and form an output laser beam towards the beam sensor. An angle between the input and the output laser beams is nonzero.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: November 15, 2022
    Assignee: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Chao Wang, Lingkai Kong, Yonghong Guo, Wenbin Zhu
  • Patent number: 11486985
    Abstract: Embodiments of the disclosure provide a receiver in an optical sensing system for receiving a light beam. The receiver includes a first polarizer configured to pass the light beam of a first polarization. The receiver further includes an electro-optical layer coated with patterned transparent electrodes. An electric field is applied to a selected area of the electro-optical layer through the patterned transparent electrodes, and the electro-optical layer changes a portion of the light beam from the first polarization to a second polarization. The receiver also includes a second polarizer configured to selectively pass the portion of the light beam of the second polarization. The receiver additionally includes a detector configured to receive the portion of the light beam output from the second polarizer.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: November 1, 2022
    Assignee: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Chao Wang, Lingkai Kong, Yonghong Guo, Wenbin Zhu
  • Patent number: 11460576
    Abstract: Embodiments of the disclosure provide transmitters for light detection and ranging (LiDAR). The transmitter includes a laser source, a light collimator, and a beam shifter. The laser source is configured to provide a native laser beam. The light collimator is configured to collimate the native laser beam to form an input laser beam transmitting along a lateral direction. The beam shifter is configured to shift the input laser beam along a vertical direction perpendicular to the lateral direction by a displacement to form an output laser beam. The output laser beam and the input laser beam are parallel to each other.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: October 4, 2022
    Assignee: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Yonghong Guo, Youmin Wang, Chao Wang, Yue Lu, Lingkai Kong
  • Publication number: 20220199666
    Abstract: Embodiments of the disclosure provide an optical sensing system, an integrated transmitter module for the optical sensing system, and an optical sensing method performed using the optical sensing system. The exemplary optical sensing system includes an integrated transmitter module configured to emit an optical signal into an environment surrounding the optical sensing system. The integrated transmitter module includes a laser emitter, one or more driving integrated circuits, and one or more optics integrated into a chamber that is hermetically sealed. The optical sensing system further includes a photodetector configured to receive the optical signal reflected from the environment and convert the received optical signal to an electrical signal. The optical sensing system additionally includes a readout circuit configured to convert the electrical signal to a digital signal. The photodetector and the readout circuit are located outside the chamber enclosing the integrated transmitter module.
    Type: Application
    Filed: December 22, 2020
    Publication date: June 23, 2022
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Yue Lu, Yu-Ching Yeh, Yonghong Guo, Youmin Wang
  • Publication number: 20220155416
    Abstract: Embodiments of the disclosure provide a system for determining a laser emitting scheme of an optical sensing device. The system includes a controller communicatively coupled to a laser emitter of the optical sensing device. The controller is configured to perform operations that includes determining a safety distance range in a field of view of the optical sensing device based on a predetermined tolerance value, causing the laser emitter to emit a first laser pulse having a first power-associated value lower than the predetermined tolerance value in the safety distance range, and detecting whether an object is detected in the safety distance range based on the first laser pulse. In response to no object being detected in the safety distance range, the controller causes the laser emitter to emit a second laser pulse having a second power-associated value higher than the first power-associated value.
    Type: Application
    Filed: November 13, 2020
    Publication date: May 19, 2022
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Wenbin Zhu, An-Chun Tien, Chao Wang, Yonghong Guo, Lingkai Kong
  • Publication number: 20220146630
    Abstract: Embodiments of the disclosure provide a light detection and ranging (LiDAR) system. In an example, the LiDAR system includes a laser source, a scanner, a beam deflecting unit, and a controller. The laser source is configured to emit a laser beam towards an object. The scanner is configured to receive a returned laser beam from the object, and deflect the returned laser beam towards a beam deflecting unit to form a first laser beam traveling along a first direction. The first direction deviates from a reference direction by a deviation angle. The beam deflecting unit is configured to receive the first laser beam, and deflect the first laser beam to form a second laser beam towards a photosensor. The controller is configured to dynamically control a deflection angle of the beam deflecting unit to cause the second laser beam to be deflected towards the photosensor to compensate the deviation angle.
    Type: Application
    Filed: November 9, 2020
    Publication date: May 12, 2022
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Chao Wang, Wenbin Zhu, Yonghong Guo, Lingkai Kong
  • Publication number: 20220075036
    Abstract: Embodiments of the disclosure provide a range estimation system for the optical sensing system. The exemplary range estimation system includes an optical detector array configured to receive a laser pulse returned from an object. The optical detector array includes a plurality of detector elements each configured to measure an intensity of the returned laser pulse. The range estimation system further includes a processor. The processor is configured to calculate an intensity-related value based on the intensities of the returned laser pulse measured using the optical detector array. The processor is further configured to determine a traveling time of the laser pulse based on the calculated intensity-related value. The processor is also configured to estimate a range between the object and the optical sensing system based on the traveling time of the laser pulse.
    Type: Application
    Filed: September 8, 2020
    Publication date: March 10, 2022
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Qin Zhou, Yonghong Guo, Youmin Wang
  • Publication number: 20210399516
    Abstract: A structured light system may include a semiconductor laser to emit light and a diffractive optical element to diffract the light such that one or more diffracted orders of the light, associated with forming a structured light pattern, are transmitted by the diffractive optical element. The diffractive optical element may be arranged such that the light is to be incident on the diffractive optical element at a substantially non-normal angle of incidence. The substantially non-normal angle of incidence may be designed to cause the diffractive optical element to transmit a zero-order beam of the light outside of a field of view associated with the diffractive optical element.
    Type: Application
    Filed: September 3, 2021
    Publication date: December 23, 2021
    Inventors: Vincent V. WONG, Yonghong GUO, Jay A. SKIDMORE
  • Publication number: 20210389434
    Abstract: Embodiments of the disclosure provide a receiver in an optical sensing system for receiving a light beam. The receiver includes a first polarizer configured to pass the light beam of a first polarization. The receiver further includes an electro-optical layer coated with patterned transparent electrodes. An electric field is applied to a selected area of the electro-optical layer through the patterned transparent electrodes, and the electro-optical layer changes a portion of the light beam from the first polarization to a second polarization. The receiver also includes a second polarizer configured to selectively pass the portion of the light beam of the second polarization. The receiver additionally includes a detector configured to receive the portion of the light beam output from the second polarizer.
    Type: Application
    Filed: June 10, 2020
    Publication date: December 16, 2021
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Chao Wang, Lingkai Kong, Yonghong Guo, Wenbin Zhu