Patents by Inventor Yongping Ding

Yongping Ding has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160351659
    Abstract: A semiconductor device includes a semiconductor substrate and epitaxial layer of a first conductivity type with the epitaxial layer on a top surface of the substrate. A body region of a second conductivity type opposite the first conductivity type is disposed near a top surface of the epitaxial layer. A first conductivity type source region is inside the body region and a drain is at a bottom surface of the substrate. An inslated gate overlaps the source and body regions. First and second trenches in the epitaxial layer are lined with insulation material and filled with electrically conductive material. Second conductivity type buried regions are positioned below the trenches. Second conductivity type charge linking paths along one or more walls of the first trench electrically connect a first buried region to the body region. A second buried region is separated from the body region by portions of the expitaxial layer.
    Type: Application
    Filed: August 12, 2016
    Publication date: December 1, 2016
    Inventors: Anup Bhalla, Hamza Yilmaz, Madhur Bobde, Lingpeng Guan, Jun Hu, Jongoh Kim, Yongping Ding
  • Patent number: 9478646
    Abstract: A method for fabricating an anode-shorted field stop insulated gate bipolar transistor (IGBT) comprises selectively forming first and second semiconductor implant regions of opposite conductivity types. A field stop layer of a second conductivity type can be grown onto or implanted into the substrate. An epitaxial layer can be grown on the substrate or on the field stop layer. One or more insulated gate bipolar transistors (IGBT) component cells are formed within the epitaxial layer.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: October 25, 2016
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATED
    Inventors: Anup Bhalla, Madhur Bobde, Yongping Ding, Xiaotian Zhang, Yueh-Se Ho
  • Publication number: 20160284797
    Abstract: A method for fabricating an anode-shorted field stop insulated gate bipolar transistor (IGBT) comprises selectively forming first and second semiconductor implant regions of opposite conductivity types. A field stop layer of a second conductivity type can be grown onto or implanted into the substrate. An epitaxial layer can be grown on the substrate or on the field stop layer. One or more insulated gate bipolar transistors (IGBT) component cells are formed within the epitaxial layer.
    Type: Application
    Filed: June 8, 2016
    Publication date: September 29, 2016
    Inventors: Anup Bhalla, Madhur Bobde, Yongping Ding, Xiaotian Zhang, Yueh-Se Ho
  • Patent number: 9450083
    Abstract: A semiconductor device includes a semiconductor substrate of a first conductivity type. A first conductivity type epitaxial layer disposed on a top surface of the substrate includes a surface shielded region above a less heavily doped voltage blocking region. A body region of a second conductivity type opposite the first conductivity type is disposed near a top surface of the surface shielded region. A first conductivity type source region is disposed near the top surface inside the body region. A drain is disposed at a bottom surface of the substrate. A gate overlaps portions of the source and body regions. Gate insulation separates the gate from the source and body regions. First and second trenches formed in the surface shielded region are lined with trench insulation material and filled with electrically conductive trench filling material. Second conductivity type buried doped regions are positioned below the first and second trenches, respectively.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: September 20, 2016
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATED
    Inventors: Anup Bhalla, Hamza Yilmaz, Madhur Bobde, Lingpeng Guan, Jun Hu, Jongoh Kim, Yongping Ding
  • Patent number: 9431495
    Abstract: A method of manufacturing a trench power MOSFET device with improved UIS performance and a high avalanche breakdown voltage is disclosed. The method includes performing a first etching of the epitaxial layer to form an active trench with an initial depth in an active area of the semiconductor substrate and a termination trench with a desired depth in a termination area of the semiconductor substrate, wherein the initial depth of the active trench is smaller than the desired depth of the termination trench and performing a second etching to increase the depth of the active trench to a desired depth wherein a depth difference between the desired depth of the active trench and the desired depth of the termination trench is smaller than a depth difference between the initial depth of the active trench and the desired depth of the termination trench.
    Type: Grant
    Filed: August 8, 2014
    Date of Patent: August 30, 2016
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Yongping Ding, Yeeheng Lee, Xiaobin Wang, Madhur Bobde
  • Publication number: 20160056098
    Abstract: A semiconductor device comprises an aluminum alloy lead-frame with a passivation layer covering an exposed portion of the aluminum alloy lead-frame. Since aluminum alloy is a low-cost material, and its hardness and flexibility are suitable for deformation process, such as punching, bending, molding and the like, aluminum alloy lead frame is suitable for mass production; furthermore, since its weight is much lower than copper or iron-nickel material, aluminum alloy lead frame is very convenient for the production of semiconductor devices.
    Type: Application
    Filed: March 11, 2014
    Publication date: February 25, 2016
    Inventors: Yan Xun Xue, Yueh-Se Ho, Yongping Ding
  • Publication number: 20160043168
    Abstract: A trench type power semiconductor device with improved breakdown voltage and UIS performance and a method for preparation the device are disclosed. The trench type power semiconductor device includes a first contact hole formed in a mesa in the active area and a second contact hole formed in a mesa in an active to termination intermediate area, where the first contact hole is deeper and wider than the second contact hole.
    Type: Application
    Filed: August 9, 2014
    Publication date: February 11, 2016
    Inventors: Yongping Ding, Hamza Yilmaz, Xiaobin Wang, Madhur Bobde
  • Publication number: 20160043192
    Abstract: A method of manufacturing a trench power MOSFET device with improved UIS performance and a high avalanche breakdown voltage is disclosed. The method includes performing a first etching of the epitaxial layer to form an active trench with an initial depth in an active area of the semiconductor substrate and a termination trench with a desired depth in a termination area of the semiconductor substrate, wherein the initial depth of the active trench is smaller than the desired depth of the termination trench and performing a second etching to increase the depth of the active trench to a desired depth wherein a depth difference between the desired depth of the active trench and the desired depth of the termination trench is smaller than a depth difference between the initial depth of the active trench and the desired depth of the termination trench.
    Type: Application
    Filed: August 8, 2014
    Publication date: February 11, 2016
    Inventors: Yongping Ding, Yeeheng Lee, Xiaobin Wang, Madhur Bobde
  • Publication number: 20160013267
    Abstract: This invention discloses a semiconductor power device disposed in a semiconductor substrate comprising a heavily doped region formed on a lightly doped region and having an active cell area and an edge termination area. The edge termination area comprises a plurality of termination trenches formed in the heavily doped region with the termination trenches lined with a dielectric layer and filled with a conductive material therein. The edge termination further includes a plurality of buried guard rings formed as doped regions in the lightly doped region of the semiconductor substrate immediately adjacent to the termination trenches.
    Type: Application
    Filed: July 12, 2014
    Publication date: January 14, 2016
    Inventors: Yeeheng Lee, Madhur Bobde, Yongping Ding, Jongoh Kim, Anup Bhalla
  • Publication number: 20150372129
    Abstract: A semiconductor device includes a semiconductor substrate of a first conductivity type. A first conductivity type epitaxial layer disposed on a top surface of the substrate includes a surface shielded region above a less heavily doped voltage blocking region. A body region of a second conductivity type opposite the first conductivity type is disposed near a top surface of the surface shielded region. A first conductivity type source region is disposed near the top surface inside the body region. A drain is disposed at a bottom surface of the substrate. A gate overlaps portions of the source and body regions. Gate insulation separates the gate from the source and body regions. First and second trenches formed in the surface shielded region are lined with trench insulation material and filled with electrically conductive trench filling material. Second conductivity type buried doped regions are positioned below the first and second trenches, respectively.
    Type: Application
    Filed: August 31, 2015
    Publication date: December 24, 2015
    Inventors: Anup Bhalla, Hamza Yilmaz, Madhur Bobde, Lingpeng Guan, Jun Hu, Jongoh Kim, Yongping Ding
  • Publication number: 20150262925
    Abstract: A semiconductor device comprises an aluminum alloy lead-frame with a passivation layer covering an exposed portion of the aluminum alloy lead-frame. Since aluminum alloy is a low-cost material, and its hardness and flexibility are suitable for deformation process, such as punching, bending, molding and the like, aluminum alloy lead frame is suitable for mass production; furthermore, since its weight is much lower than copper or iron-nickel material, aluminum alloy lead frame is very convenient for the production of semiconductor devices.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 17, 2015
    Inventors: Yan Xun Xue, Yueh-Se Ho, Yongping Ding
  • Patent number: 9129822
    Abstract: A semiconductor power device formed in a semiconductor substrate comprising a highly doped region near a top surface of the semiconductor substrate on top of a lightly doped region supported by a heavily doped region. The semiconductor power device further comprises source trenches opened into the highly doped region filled with conductive trench filling material in electrical contact with the source region near the top surface. The semiconductor power device further comprises buried P-regions disposed below the source trenches and doped with dopants of opposite conductivity from the highly doped region. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: September 8, 2015
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Anup Bhalla, Hamza Yilmaz, Madhur Bobde, Lingpeng Guan, Jun Hu, Jongoh Kim, Yongping Ding
  • Publication number: 20150060936
    Abstract: This invention discloses a semiconductor power device disposed in a semiconductor substrate. The semiconductor power device comprises a plurality of trenches formed at a top portion of the semiconductor substrate extending laterally across the semiconductor substrate along a longitudinal direction each having a nonlinear portion comprising a sidewall perpendicular to a longitudinal direction of the trench and extends vertically downward from a top surface to a trench bottom surface. The semiconductor power device further includes a trench bottom dopant region disposed below the trench bottom surface and a sidewall dopant region disposed along the perpendicular sidewall wherein the sidewall dopant region extends vertically downward along the perpendicular sidewall of the trench to reach the trench bottom dopant region and pick-up the trench bottom dopant region to the top surface of the semiconductor substrate.
    Type: Application
    Filed: August 27, 2013
    Publication date: March 5, 2015
    Inventors: Yongping Ding, Sik Lui, Madhur Bobde, Lei Zhang, Jongoh Kim, John Chen
  • Publication number: 20140332844
    Abstract: This invention discloses a semiconductor power device disposed in a semiconductor substrate. The semiconductor power device comprises a plurality of trenches each having a trench endpoint with an endpoint sidewall perpendicular to a longitudinal direction of the trench and extends vertically downward from a top surface to a trench bottom surface. The semiconductor power device further includes a trench bottom dopant region disposed below the trench bottom surface and a sidewall dopant region disposed along the endpoint sidewall wherein the sidewall dopant region extends vertically downward along the endpoint sidewall of the trench to reach the trench bottom dopant region and pick-up the trench bottom dopant region to the top surface of the semiconductor substrate.
    Type: Application
    Filed: May 10, 2013
    Publication date: November 13, 2014
    Inventors: Yongping Ding, Lei Zhang, Hong Chang, Jongoh Kim, John Chen
  • Publication number: 20140319604
    Abstract: A semiconductor power device formed in a semiconductor substrate comprising a highly doped region near a top surface of the semiconductor substrate on top of a lightly doped region supported by a heavily doped region. The semiconductor power device further comprises source trenches opened into the highly doped region filled with conductive trench filling material in electrical contact with the source region near the top surface. The semiconductor power device further comprises buried P-regions disposed below the source trenches and doped with dopants of opposite conductivity from the highly doped region. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: July 11, 2014
    Publication date: October 30, 2014
    Inventors: Anup Bhalla, Hamza Yilmaz, Madhur Bobde, Lingpeng Guan, Jun Hu, Jongoh Kim, Yongping Ding
  • Patent number: 8803251
    Abstract: This invention discloses a semiconductor power device disposed in a semiconductor substrate comprising a heavily doped region formed on a lightly doped region and having an active cell area and an edge termination area. The edge termination area comprises a plurality of termination trenches formed in the heavily doped region with the termination trenches lined with a dielectric layer and filled with a conductive material therein. The edge termination further includes a plurality of buried guard rings formed as doped regions in the lightly doped region of the semiconductor substrate immediately adjacent to the termination trenches.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: August 12, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Yeeheng Lee, Madhur Bobde, Yongping Ding, Jongoh Kim, Anup Bhalla
  • Patent number: 8785279
    Abstract: A semiconductor power device formed in a semiconductor substrate comprising a highly doped region near a top surface of the semiconductor substrate on top of a lightly doped region supported by a heavily doped region. The semiconductor power device further comprises source trenches opened into the highly doped region filled with conductive trench filling material in electrical contact with the source region near the top surface. The semiconductor power device further comprises buried P-regions disposed below the source trenches and doped with dopants of opposite conductivity from the highly doped region. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: July 22, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Anup Bhalla, Hamza Yilmaz, Madhur Bobde, Lingpeng Guan, Jun Hu, Jongoh Kim, Yongping Ding
  • Patent number: 8716069
    Abstract: A semiconductor device comprises an aluminum alloy lead-frame with a passivation layer covering an exposed portion of the aluminum alloy lead-frame. Since aluminum alloy is a low-cost material, and its hardness and flexibility are suitable for deformation process, such as punching, bending, molding and the like, aluminum alloy lead frame is suitable for mass production; furthermore, since its weight is much lower than copper or iron-nickel material, aluminum alloy lead frame is very convenient for the production of semiconductor devices.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: May 6, 2014
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Yan Xun Xue, Yueh-Se Ho, Yongping Ding
  • Patent number: 8697520
    Abstract: A semiconductor device having a plurality of transistors includes a termination area that features a transistor with an asymmetric gate.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: April 15, 2014
    Assignee: Alpha & Omega Semiconductor Incorporationed
    Inventors: Yeeheng Lee, Yongping Ding, Xiaobin Wang
  • Publication number: 20140091446
    Abstract: A semiconductor device comprises an aluminum alloy lead-frame with a passivation layer covering an exposed portion of the aluminum alloy lead-frame. Since aluminum alloy is a low-cost material, and its hardness and flexibility are suitable for deformation process, such as punching, bending, molding and the like, aluminum alloy lead frame is suitable for mass production; furthermore, since its weight is much lower than copper or iron-nickel material, aluminum alloy lead frame is very convenient for the production of semiconductor devices.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Inventors: Yan Xun Xue, Yueh-Se Ho, Yongping Ding