Patents by Inventor Yongqian Wang

Yongqian Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11967620
    Abstract: Embodiments of the present disclosure provide a thin film transistor, a method of manufacturing the same, and a display device. The thin film transistor includes a metal conductive pattern layer, an interlayer insulating layer, and a metal oxide layer; and the metal conductive pattern layer includes: a light shielding pattern, a source signal line, and/or a drain signal line; the metal oxide layer includes: a source electrode, a drain electrode, and an active layer. An orthographic projection of the active layer on the base substrate has an overlapping region with that of the light shielding pattern; the source electrode extends through the interlayer insulating layer to connect to the source signal line, and/or the drain electrode extends through the interlayer insulating layer to connect to the drain signal line.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: April 23, 2024
    Assignee: BOE Technology Group Co., Ltd.
    Inventors: Pan Xu, Yicheng Lin, Cuili Gai, Ling Wang, Yongqian Li
  • Patent number: 11963397
    Abstract: A display region includes a plurality of pixel driving circuitry setting regions arranged sequentially in a first direction, and each pixel driving circuitry setting region extends in a second direction intersecting the first direction. Each display circuitry includes a plurality of subpixels in one-to-one correspondence with the pixel driving circuitry setting regions, each subpixel includes a subpixel driving circuitry and a light-emitting element coupled to each other, the subpixel driving circuitry is located in a corresponding pixel driving circuitry setting region, the light-emitting element is located at a side of the subpixel driving circuitry away from the substrate, a width of the light-emitting element is greater than a width of the corresponding pixel driving circuitry setting region in the first direction, and a length of the light-emitting element is smaller than a length of the corresponding pixel driving circuitry setting region in the second direction.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: April 16, 2024
    Assignees: HEFEI BOE JOINT TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Meng Li, Yongqian Li, Jingquan Wang, Chen Xu, Dacheng Zhang, Zhidong Yuan, Can Yuan, Xuehuan Feng
  • Patent number: 11929441
    Abstract: A conductive contact structure of a solar cell is provided, includes a substrate; a semiconductor region; and an electrode. The semiconductor region is disposed on or in the substrate. The electrode is disposed in the semiconductor region. The electrode includes a seed layer in contact with the semiconductor region. The seed layer includes an alloy material, and includes a main component and an improved component. The main component is one or more metals having an average refractive index lower than 2 and a wavelength in a range of 850-1200 nm, and the improved component includes any one or more of Mo, Ni, Ti, W, Cr, Mn, Pd, Bi, Nb, Ta, Pa, Si, and V.
    Type: Grant
    Filed: June 20, 2022
    Date of Patent: March 12, 2024
    Assignee: SOLARLAB AIKO EUROPE GMBH
    Inventors: Yongqian Wang, Wenli Xu, Jianjun Zhang, Jianbo Hong, Gang Chen
  • Publication number: 20240021741
    Abstract: The disclosure relates to the technical field of solar cells, and provides a solar cell and a doped region structure thereof, a cell assembly, and a photovoltaic system. The doped region structure includes a first doped layer, a passivation layer, and a second doped layer that are disposed on a silicon substrate in sequence. The passivation layer is a porous structure having the first doped layer and/or the second doped layer inlaid in a hole region. The first doped layer and the second doped layer have a same doping polarity. By means of the doped region structure of the solar cell provided in the disclosure, the difficulty in production and the limitation on conversion efficiency as a result of precise requirements for the accuracy of a thickness of a conventional tunneling layer are resolved.
    Type: Application
    Filed: September 29, 2023
    Publication date: January 18, 2024
    Inventors: Gang CHEN, Wenli XU, Kaifu QIU, Yongqian WANG, Xinqiang YANG
  • Publication number: 20230402561
    Abstract: A method for soldering a solar cell, includes: placing a plurality of back contact cells on a soldering platform, where back surfaces of the back contact cells face away from the soldering platform, and electrodes corresponding to two adjacent back contact cells have opposite polarities in a connection direction of a plurality of to-be-connected ribbons; placing the plurality of to-be-connected ribbons on the electrodes of the plurality of back contact cells by using a first clamping portion, a second clamping portion, and a plurality of third clamping portions, where the first clamping portion, the second clamping portion, and the plurality of third clamping portions respectively correspond to head ends, tail ends, and middle portions of the plurality of ribbons; and heating the plurality of ribbons by using a heater to connect the plurality of ribbons to the plurality of back contact cells.
    Type: Application
    Filed: June 30, 2023
    Publication date: December 14, 2023
    Inventors: Yongqian WANG, Ning ZHANG, Wenli XU, Gang WANG, Gang CHEN
  • Patent number: 11837671
    Abstract: The disclosure relates to the technical field of solar cells, and provides a solar cell and a doped region structure thereof, a cell assembly, and a photovoltaic system. The doped region structure includes a first doped layer, a passivation layer, and a second doped layer that are disposed on a silicon substrate in sequence. The passivation layer is a porous structure having the first doped layer and/or the second doped layer inlaid in a hole region. The first doped layer and the second doped layer have a same doping polarity. By means of the doped region structure of the solar cell provided in the disclosure, the difficulty in production and the limitation on conversion efficiency as a result of precise requirements for the accuracy of a thickness of a conventional tunneling layer are resolved.
    Type: Grant
    Filed: February 17, 2023
    Date of Patent: December 5, 2023
    Assignee: SOLARLAB AIKO EUROPE GMBH
    Inventors: Gang Chen, Wenli Xu, Kaifu Qiu, Yongqian Wang, Xinqiang Yang
  • Publication number: 20230317866
    Abstract: The disclosure relates to the technical field of solar cells, and provides a solar cell and a doped region structure thereof, a cell assembly, and a photovoltaic system. The doped region structure includes a first doped layer, a passivation layer, and a second doped layer that are disposed on a silicon substrate in sequence. The passivation layer is a porous structure having the first doped layer and/or the second doped layer inlaid in a hole region. The first doped layer and the second doped layer have a same doping polarity. By means of the doped region structure of the solar cell provided in the disclosure, the difficulty in production and the limitation on conversion efficiency as a result of precise requirements for the accuracy of a thickness of a conventional tunneling layer are resolved.
    Type: Application
    Filed: June 7, 2023
    Publication date: October 5, 2023
    Inventors: Gang CHEN, Wenli XU, Kaifu QIU, Yongqian WANG, Xinqiang YANG
  • Patent number: 11777045
    Abstract: A back contact structure includes: a silicon substrate including a back surface including a plurality of recesses disposed at intervals; a first dielectric layer disposed on the back surface of the silicon substrate; a plurality of first doped regions disposed on the first dielectric layer and disposed inside the plurality of recesses; a plurality of second doped regions disposed on the first dielectric layer and disposed outside the plurality of recesses; a second dielectric layer disposed between the first doped regions and the second doped regions; and a conductive layer disposed on the first plurality of doped regions and the plurality of second doped regions.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: October 3, 2023
    Assignee: SOLARLAB AIKO EUROPE GMBH
    Inventors: Kaifu Qiu, Yongqian Wang, Xinqiang Yang, Gang Chen
  • Patent number: 11764316
    Abstract: A back contact structure includes: a silicon substrate including a back surface including a plurality of recesses disposed at intervals; a plurality of first conductive regions and a plurality of second conductive regions disposed alternately on the back surface of the silicon substrate; a second dielectric layer disposed between the plurality of first conductive regions and the plurality of second conductive regions; and a conductive layer disposed on the plurality of first conductive regions and the plurality of second conductive regions. One of the plurality of first conductive regions and the plurality of second conductive regions is disposed inside the plurality of recesses, respectively, and the other one is disposed outside the plurality of recesses; each first conductive region includes a first dielectric layer and a first doped region which are disposed successively, and each second conductive region includes a second doped region.
    Type: Grant
    Filed: December 2, 2021
    Date of Patent: September 19, 2023
    Assignee: SOLARLAB AIKO EUROPE GMBH
    Inventors: Kaifu Qiu, Yongqian Wang, Xinqiang Yang, Gang Chen
  • Publication number: 20230290901
    Abstract: The disclosure discloses a method for manufacturing a solar cell, a solar module, and a power generation system. The manufacturing method includes the following steps: S1: perforating film layer in a first region and/or a second region of a solar cell where an electrode is to be disposed, thus forming a plurality holes; S2: growing a plurality seed layers on the solar cell, contacting with the first region and/or the second region through the plurality of holes or grooves in S1; and S3: horizontally transporting a to-be-electroplated solar cell on a horizontal electroplating device, to form a cathode on the seed layer, where an anode terminal is disposed in an electroplating liquid in an electroplating bath, and a moving mechanism disposed in the electroplating bath drives the solar cell to move from inlet to outlet, thus achieving electroplating.
    Type: Application
    Filed: July 7, 2022
    Publication date: September 14, 2023
    Inventors: Yongqian WANG, Wenli XU, Wei ZHU, Gang CHEN
  • Publication number: 20230290893
    Abstract: A conductive contact structure of a solar cell is provided, includes a substrate; a semiconductor region; and an electrode. The semiconductor region is disposed on or in the substrate. The electrode is disposed in the semiconductor region. The electrode includes a seed layer in contact with the semiconductor region. The seed layer includes an alloy material, and includes a main component and an improved component. The main component is one or more metals having an average refractive index lower than 2 and a wavelength in a range of 850-1200 nm, and the improved component includes any one or more of Mo, Ni, Ti, W, Cr, Mn, Pd, Bi, Nb, Ta, Pa, Si, and V.
    Type: Application
    Filed: June 20, 2022
    Publication date: September 14, 2023
    Inventors: Yongqian WANG, Wenli XU, Jianjun ZHANG, Jianbo HONG, Gang CHEN
  • Publication number: 20230282761
    Abstract: A method for soldering a solar cell, includes: placing a plurality of back contact cells on a soldering platform, where back surfaces of the back contact cells face away from the soldering platform, and electrodes corresponding to two adjacent back contact cells have opposite polarities in a connection direction of a plurality of to-be-connected ribbons; placing the plurality of to-be-connected ribbons on the electrodes of the plurality of back contact cells by using a first clamping portion, a second clamping portion, and a plurality of third clamping portions, where the first clamping portion, the second clamping portion, and the plurality of third clamping portions respectively correspond to head ends, tail ends, and middle portions of the plurality of ribbons; and heating the plurality of ribbons by using a heater to connect the plurality of ribbons to the plurality of back contact cells.
    Type: Application
    Filed: June 21, 2022
    Publication date: September 7, 2023
    Inventors: Yongqian WANG, Ning ZHANG, Wenli XU, Gang WANG, Gang CHEN
  • Patent number: 11749761
    Abstract: The disclosure relates to the technical field of solar cells, and provides a solar cell and a doped region structure thereof, a cell assembly, and a photovoltaic system. The doped region structure includes a first doped layer, a passivation layer, and a second doped layer that are disposed on a silicon substrate in sequence. The passivation layer is a porous structure having the first doped layer and/or the second doped layer inlaid in a hole region. The first doped layer and the second doped layer have a same doping polarity. By means of the doped region structure of the solar cell provided in the disclosure, the difficulty in production and the limitation on conversion efficiency as a result of precise requirements for the accuracy of a thickness of a conventional tunneling layer are resolved.
    Type: Grant
    Filed: October 24, 2021
    Date of Patent: September 5, 2023
    Assignee: SOLARLAB AIKO EUROPE GMBH
    Inventors: Gang Chen, Wenli Xu, Kaifu Qiu, Yongqian Wang, Xinqiang Yang
  • Patent number: 11743090
    Abstract: A method and an apparatus for carrier frequency-offset determination and a storage medium are provided. The method includes the following. A first carrier initial frequency-offset is obtained according to a pilot time interval and a pilot phase difference of a first carrier. A second carrier frequency-offset is obtained according to a carrier frequency-ratio of a second carrier to the first carrier and the first carrier initial frequency-offset. A first carrier frequency-offset is obtained according to the first carrier initial frequency-offset.
    Type: Grant
    Filed: January 11, 2022
    Date of Patent: August 29, 2023
    Assignee: RDA MICROELECTRONICS (SHANGHAI) CO., LTD.
    Inventors: Fengxiang Wang, Jiayi Zhuang, Liyun Luo, Yongqian Wang, Jian Cheng, Kai Li
  • Patent number: 11728454
    Abstract: A method for soldering a solar cell, includes: placing a plurality of back contact cells on a soldering platform, where back surfaces of the back contact cells face away from the soldering platform, and electrodes corresponding to two adjacent back contact cells have opposite polarities in a connection direction of a plurality of to-be-connected ribbons; placing the plurality of to-be-connected ribbons on the electrodes of the plurality of back contact cells by using a first clamping portion, a second clamping portion, and a plurality of third clamping portions, where the first clamping portion, the second clamping portion, and the plurality of third clamping portions respectively correspond to head ends, tail ends, and middle portions of the plurality of ribbons; and heating the plurality of ribbons by using a heater to connect the plurality of ribbons to the plurality of back contact cells.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: August 15, 2023
    Assignee: SOLARLAB AIKO EUROPE GMBH
    Inventors: Yongqian Wang, Ning Zhang, Wenli Xu, Gang Wang, Gang Chen
  • Patent number: 11695087
    Abstract: A back contact structure of a solar cell, includes: a silicon substrate, the silicon substrate including a back surface including a plurality of recesses disposed at intervals; a plurality of first conductive regions and a plurality of second conductive regions disposed alternately in the plurality of recesses, where each first conductive region includes a first dielectric layer and a first doped region which are disposed successively in the plurality of recesses, and each second conductive region includes a second doped region; a second dielectric layer disposed between the plurality of first conductive regions and the plurality of second conductive regions; and a conductive layer disposed on the plurality of first conductive regions and the plurality of second conductive regions.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: July 4, 2023
    Assignee: SOLARLAB AIKO EUROPE GMBH
    Inventors: Kaifu Qiu, Yongqian Wang, Xinqiang Yang, Gang Chen
  • Patent number: 11688816
    Abstract: The disclosure provides an electrode structure of a back contact cell, a back contact cell, a back contact cell module, and a back contact cell system. The electrode structure includes: first fingers, configured to collect a first polarity region; second fingers, configured to collect a second polarity region; a first busbar, disposed on a side of the back contact cell close to a first edge and connected to the first fingers; first pad points; and first connection electrodes, respectively connected to the first busbar and the first pad points. A distance between each of the first pad points and the first edge is greater than a distance between the first busbar and the first edge. The electrode structure can improve the reliability, reduce the costs, increase the product yield, and ensure excellent photoelectric conversion efficiency.
    Type: Grant
    Filed: January 10, 2023
    Date of Patent: June 27, 2023
    Assignee: SOLARLAB AIKO EUROPE GMBH
    Inventors: Yongqian Wang, Xinqiang Yang, Gang Chen
  • Publication number: 20230197865
    Abstract: The disclosure relates to the technical field of solar cells, and provides a solar cell and a doped region structure thereof, a cell assembly, and a photovoltaic system. The doped region structure includes a first doped layer, a passivation layer, and a second doped layer that are disposed on a silicon substrate in sequence. The passivation layer is a porous structure having the first doped layer and/or the second doped layer inlaid in a hole region. The first doped layer and the second doped layer have a same doping polarity. By means of the doped region structure of the solar cell provided in the disclosure, the difficulty in production and the limitation on conversion efficiency as a result of precise requirements for the accuracy of a thickness of a conventional tunneling layer are resolved.
    Type: Application
    Filed: February 17, 2023
    Publication date: June 22, 2023
    Inventors: Gang CHEN, Wenli XU, Kaifu QIU, Yongqian WANG, Xinqiang YANG
  • Patent number: 11588060
    Abstract: The disclosure provides an electrode structure of a back contact cell, a back contact cell, a back contact cell module, and a back contact cell system. The electrode structure includes: first fingers, configured to collect a first polarity region; second fingers, configured to collect a second polarity region; a first busbar, disposed on a side of the back contact cell close to a first edge and connected to the first fingers; first pad points; and first connection electrodes, respectively connected to the first busbar and the first pad points. A distance between each of the first pad points and the first edge is greater than a distance between the first busbar and the first edge. The electrode structure can improve the reliability, reduce the costs, increase the product yield, and ensure excellent photoelectric conversion efficiency.
    Type: Grant
    Filed: May 13, 2022
    Date of Patent: February 21, 2023
    Assignee: SOLARLAB AIKO EUROPE GMBH
    Inventors: Yongqian Wang, Xinqiang Yang, Gang Chen
  • Publication number: 20230027079
    Abstract: The disclosure provides a solar cell and a back contact structure thereof, a photovoltaic module, and a photovoltaic system. The back contact structure includes a first doped region having an opposite polarity to a silicon substrate and a second doped region having a same polarity as the silicon substrate. An isolation region is arranged between the first doped region and the second doped region. The protective region arranged on the first doped region includes an insulation layer and a third doped layer having a same polarity as the second doped region. An opening is provided in the protective region to connect the first conductive layer to the first doped region. In the present invention, scratches caused by belt transmission in an existing cell fabrication process is resolved.
    Type: Application
    Filed: July 11, 2022
    Publication date: January 26, 2023
    Inventors: Gang CHEN, Wenli XU, Kaifu QIU, Yongqian WANG, Xinqiang YANG