Patents by Inventor Yongxin Wang

Yongxin Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8648211
    Abstract: The present disclosure describes compounds of Formula (I) wherein m is 1 to 6, n is 6 to 10 and R1 is a straight or branch chain siloxane, their use in methods to modify the surface of hydrophobic substrates to render the substrates superhydrophilic and surface-modified substrates.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: February 11, 2014
    Inventors: Michael A. Brook, Yongxin Wang, Yang Chen
  • Publication number: 20120226001
    Abstract: The present disclosure describes compounds of Formula (I) wherein m is 1 to 6, n is 6 to 10 and R1 is a straight or branch chain siloxane, their use in methods to modify the surface of hydrophobic substrates to render the substrates superhydrophilic and surface-modified substrates.
    Type: Application
    Filed: August 27, 2010
    Publication date: September 6, 2012
    Applicant: McMaster University
    Inventors: Michael A. Brook, Yongxin Wang, Wang Chen
  • Patent number: 7278593
    Abstract: A common rail fuel injector comprises a three-way control valve that controls the flow of high-pressure fuel to a fuel cavity for fuel injection. Specifically, when the control valve is transitioning to a first, on position, from a second, off position, high-pressure fuel is provided to both the fuel cavity and to a check control cavity, thereby preventing fuel injection until the control valve seats in the first, on position. Once seated in the first, on position, the control valve only provides high-pressure fuel to the fuel cavity allowing fuel injection to occur. To stop injection, the control valve is moved from the first, on position to the second, closed position. Once again, while the control valve is in the transition location between the two positions, high-pressure fuel is provided to both the fuel cavity and to the check control cavity thereby terminating injection.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: October 9, 2007
    Assignee: Caterpillar Inc.
    Inventors: Yongxin Wang, Ye Tian, Norman D. Knapp, Norval J. Wiemken
  • Patent number: 7021565
    Abstract: Common rail fuel injectors typically have difficulty in changing an injection rate during an injection event. Fuel injectors for this common rail fuel injection system include a multi-position admission valve. The admission valve is stoppable at a middle position to inject fuel at a low rate. The lower rate is accomplished by leaking some fuel to drain to reduce injection pressure. The admission valve is also stoppable at a fully open position to inject fuel at a high rate. Fuel injection events are ended, and the fuel injectors maintained between injection events, with the admission valve member in contact with a supply seat to close the high pressure supply passage. This strategy can be used in conjunction with a spring-biased needle valve member to expand fuel injector capabilities.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: April 4, 2006
    Assignee: Caterpillar Inc.
    Inventors: Dana R. Coldren, Richard R. Ohs, Scott F. Shafer, Yongxin Wang
  • Publication number: 20050173563
    Abstract: Common rail fuel injectors typically have difficulty in changing an injection rate during an injection event. Fuel injectors for this common rail fuel injection system include a multi-position admission valve. The admission valve is stoppable at a middle position to inject fuel at a low rate. The lower rate is accomplished by leaking some fuel to drain to reduce injection pressure. The admission valve is also stoppable at a fully open position to inject fuel at a high rate. Fuel injection events are ended, and the fuel injectors maintained between injection events, with the admission valve member in contact with a supply seat to close the high pressure supply passage. This strategy can be used in conjunction with a spring-biased needle valve member to expand fuel injector capabilities.
    Type: Application
    Filed: February 10, 2004
    Publication date: August 11, 2005
    Inventors: Dana Coldren, Richard Ohs, Scott Shafer, Yongxin Wang
  • Publication number: 20040056117
    Abstract: A common rail fuel injector comprises a three-way control valve that controls the flow of high-pressure fuel to a fuel cavity for fuel injection. Specifically, when the control valve is transitioning to a first, on position, from a second, off position, high-pressure fuel is provided to both the fuel cavity and to a check control cavity, thereby preventing fuel injection until the control valve seats in the first, on position. Once seated in the first, on position, the control valve only provides high-pressure fuel to the fuel cavity allowing fuel injection to occur. To stop injection, the control valve is moved from the first, on position to the second, closed position. Once again, while the control valve is in the transition location between the two positions, high-pressure fuel is provided to both the fuel cavity and to the check control cavity thereby terminating injection.
    Type: Application
    Filed: June 20, 2003
    Publication date: March 25, 2004
    Inventors: Yongxin Wang, Ye Tian, Norman D. Knapp, Norval J. Wiemken
  • Publication number: 20040046056
    Abstract: A fuel injector in an engine includes a spring cavity, a piston, a plunger, a spring, a fuel cavity, and a stop plate. The piston is hydraulically controlled to force the plunger down to compress fuel in the fuel cavity. However, under certain conditions, the plunger can contact the stop plate and/or the spring can become overcompressed. Both of these conditions can cause damage to the fuel injector. The present invention locates a pressure equalization channel in such a way as to dampen the motion of the piston to prevent this damage to the fuel injector.
    Type: Application
    Filed: August 30, 2002
    Publication date: March 11, 2004
    Inventors: Dongming Tan, Thomas R. McClure, Scott R. Schuricht, Yongxin Wang