Patents by Inventor Yoshinori Ogawa

Yoshinori Ogawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12183853
    Abstract: An LED module includes a first electrode and a second electrode disposed on the substrate, an LED chip disposed on the first electrode and the second electrode, and a first bump between the LED chip and the first electrode, and a second bump between the LED chip and the second electrode. The LED chip includes a cathode electrode facing the first electrode, an anode electrode facing the second electrode, and a step portion between the cathode electrode and the anode electrode, a distance between the first electrode and the cathode electrode is larger than a distance between the second electrode and the anode electrode, and the first bump is disposed to embed the step portion.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: December 31, 2024
    Assignee: Japan Display Inc.
    Inventors: Masanobu Ikeda, Yoshinori Aoki, Akihiro Ogawa
  • Publication number: 20240417332
    Abstract: A porous formed plate includes 35 to 70% by mass of a substance not involved in a pozzolanic reaction; 20 to 61.5% by mass of a cement; 1 to 3% by mass of synthetic fibers; and 2.5 to 7% by mass of a pulp, wherein, in a pore size distribution of the formed plate that is determined by a mercury intrusion method, a ratio (B)/(A) of a pore volume (B) in a range of 6 to 560 nm with respect to a pore volume (A) in a range of 660 to 9,100 nm is 1.70 to 6.0.
    Type: Application
    Filed: October 31, 2022
    Publication date: December 19, 2024
    Applicant: Kuraray Co., Ltd.
    Inventors: Yoshinori Hitomi, Akira Imagawa, Atsuhisa Ogawa, Satoshi Katsuya, Saburo Hada
  • Patent number: 12168745
    Abstract: (A) an organopolysiloxane having, per molecule, two groups each represented by formula (1) (R1 represents a C1-20 monovalent hydrocarbon group, R2 represents an oxygen atom or the like, R3 represents an acryloyloxyalkyl group or the like, and p and a respectively represent numbers satisfying 0-10 and 1-3); (B) a monofunctional (meth)acrylate compound not including a siloxane structure; (C) an organopolysiloxane resin which comprises a unit (a) represented by formula (2) (R1, R2, R3, a, and p are identical to those described above), a R43SiO1/2 unit (b) (in the formula, R4 represents a monovalent hydrocarbon group having 1-10 carbon atoms), and a SiO4/2 unit (c), and in which the mole ratio of the total of units (a) and (b) to unit (c) is in a range of 0.4 to 1.2:1; and (D) a photoinitiator.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: December 17, 2024
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Kohei Otake, Taichi Kitagawa, Nobuaki Matsumoto, Toshiyuki Ozai, Yoshinori Ogawa
  • Publication number: 20240413264
    Abstract: The present disclosure provides a method for separating a bonded wafer, including separating a support from a bonded wafer.
    Type: Application
    Filed: September 27, 2022
    Publication date: December 12, 2024
    Applicants: Shin-Etsu Handotai Co., Ltd., SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Junya Ishizaki, Masato Yamada, Yoshinori Ogawa
  • Publication number: 20240404865
    Abstract: The present disclosure provides a receptor substrate on which a plurality of objects to be transferred onto another substrate by using a stamper are disposed, and a method of manufacturing the same.
    Type: Application
    Filed: October 12, 2022
    Publication date: December 5, 2024
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Hiroshi Yamaoka, Masami Kurata, Taketo Usami, Yoshinori Ogawa, Kazunori Kondo
  • Patent number: 12119017
    Abstract: Provided is a device that includes a user spoken voice extraction unit that extracts a user spoken voice from a microphone input sound. The user spoken voice extraction unit analyzes a sound source direction of an input sound, determines whether the input sound includes an external apparatus output sound on the basis of sound source directions of external apparatus output sounds recorded in a database, and removes a sound signal corresponding to a feature amount, for example, a frequency characteristic of the external apparatus output sound recorded in the database, from the input sound to extract a user spoken voice from which the external apparatus output sound has been removed upon determining that the input sound includes the external apparatus output sound.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: October 15, 2024
    Assignee: SONY GROUP CORPORATION
    Inventors: Akira Takahashi, Kazuya Tateishi, Yuichiro Koyama, Hiroaki Ogawa, Chie Kamada, Noriko Totsuka, Emiro Tsunoo, Yuki Takeda, Yoshinori Maeda, Kan Kuroda, Akira Fukui, Hideaki Watanabe
  • Patent number: 12002792
    Abstract: A method for transferring alignment marks between substrate systems includes providing a substrate having semiconductor devices and alignment marks in precise alignment with the semiconductor devices; and physically transferring and bonding the semiconductor devices and the alignment marks to a temporary substrate of a first substrate system. The method can also include physically transferring and bonding the semiconductor devices and the alignment marks to a mass transfer substrate of a second substrate system; and physically transferring and bonding the semiconductor devices and the alignment marks to a circuitry substrate of a third substrate system. A system for transferring alignment marks between substrate systems includes the substrate having the semiconductor devices and the alignment marks in precise alignment with the semiconductor devices. The system also includes the first substrate system, and can include the second substrate system and the third substrate system.
    Type: Grant
    Filed: November 18, 2022
    Date of Patent: June 4, 2024
    Assignees: SemiLEDs Corporation, Shin-Etsu Chemical Co. Ltd.
    Inventors: David Trung Doan, Yoshinori Ogawa, Nobuaki Matsumoto
  • Publication number: 20240072203
    Abstract: A method for fabricating light emitting diode (LED) dice includes the steps of: providing a substrate, and forming a plurality of die sized semiconductor structures on the substrate. The method also includes the steps of providing a receiving plate having an elastomeric polymer layer, placing the substrate and the receiving plate in physical contact with an adhesive force applied by the elastomeric polymer layer, and performing a laser lift-off (LLO) process by directing a uniform laser beam through the substrate to the semiconductor layer at an interface with the substrate to lift off the semiconductor structures onto the elastomeric polymer layer. During the laser lift-off (LLO) process the elastomeric polymer layer functions as a shock absorber to reduce momentum transfer, and as an adhesive surface to hold the semiconductor structures in place on the receiving plate.
    Type: Application
    Filed: November 6, 2023
    Publication date: February 29, 2024
    Applicants: SemiLEDs Corporation, SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Chen-Fu Chu, Shih-Kai Chan, Yi-Feng Shih, David Trung Doan, Trung Tri Doan, Yoshinori Ogawa, Kohei Otake, Kazunori Kondo, Keiji Ohori, Taichi Kitagawa, Nobuaki Matsumoto, Toshiyuki Ozai, Shuhei Ueda
  • Publication number: 20240063339
    Abstract: A method for fabricating light emitting diode (LED) dice includes the steps of: providing a substrate, and forming a plurality of die sized semiconductor structures on the substrate. The method also includes the steps of providing a receiving plate having an elastomeric polymer layer, placing the substrate and the receiving plate in physical contact with an adhesive force applied by the elastomeric polymer layer, and performing a laser lift-off (LLO) process by directing a uniform laser beam through the substrate to the semiconductor layer at an interface with the substrate to lift off the semiconductor structures onto the elastomeric polymer layer. During the laser lift-off (LLO) process the elastomeric polymer layer functions as a shock absorber to reduce momentum transfer, and as an adhesive surface to hold the semiconductor structures in place on the receiving plate.
    Type: Application
    Filed: October 26, 2023
    Publication date: February 22, 2024
    Applicants: SamiLEDs Corporation, SHIN-ETSU CHEMICAL. CO., LTD.
    Inventors: Chen-Fu Chu, SHIH-KAI CHAN, YI-FENG SHIH, DAVID TRUNG DOAN, TRUNG TRI DOAN, YOSHINORI OGAWA, KOHEI OTAKE, KAZUNORI KONDO, KEIJI OHORI, TAICHI KITAGAWA, NOBUAKI MATSUMOTO, TOSHIYUKI oZAI, SHUHEI UEDA
  • Publication number: 20240047243
    Abstract: A microstructure-transfer stamp component including a substrate and a silicone-based rubber film formed on the substrate, wherein a surface of the silicone-based rubber film facing away from the substrate has one or more recesses each being closed except for a surface opening. This provides a microstructure-transfer stamp component that can optimize temporary adhesive strength of the surface of the silicone-based rubber film stamp in a short period of time.
    Type: Application
    Filed: November 16, 2021
    Publication date: February 8, 2024
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Hideo NAKAGAWA, Yoshinori OGAWA, Toshiyuki OZAI
  • Patent number: 11862754
    Abstract: A method for fabricating light emitting diode (LED) dice includes the steps of: providing a substrate, and forming a plurality of die sized semiconductor structures on the substrate. The method also includes the steps of providing a receiving plate having an elastomeric polymer layer, placing the substrate and the receiving plate in physical contact with an adhesive force applied by the elastomeric polymer layer, and performing a laser lift-off (LLO) process by directing a uniform laser beam through the substrate to the semiconductor layer at an interface with the substrate to lift off the semiconductor structures onto the elastomeric polymer layer. During the laser lift-off (LLO) process the elastomeric polymer layer functions as a shock absorber to reduce momentum transfer, and as an adhesive surface to hold the semiconductor structures in place on the receiving plate.
    Type: Grant
    Filed: May 10, 2022
    Date of Patent: January 2, 2024
    Assignees: SemiLEDs Corporation, Shin-Etsu Chemical Co., Ltd.
    Inventors: Chen-Fu Chu, Shih-Kai Chan, Yi-Feng Shih, David Trung Doan, Trung Tri Doan, Yoshinori Ogawa, Kohei Otake, Kazunori Kondo, Keiji Ohori, Taichi Kitagawa, Nobuaki Matsumoto, Toshiyuki Ozai, Shuhei Ueda
  • Patent number: 11862755
    Abstract: A method for fabricating light emitting diode (LED) dice includes the steps of: providing a substrate, and forming a plurality of die sized semiconductor structures on the substrate. The method also includes the steps of providing a receiving plate having an elastomeric polymer layer, placing the substrate and the receiving plate in physical contact with an adhesive force applied by the elastomeric polymer layer, and performing a laser lift-off (LLO) process by directing a uniform laser beam through the substrate to the semiconductor layer at an interface with the substrate to lift off the semiconductor structures onto the elastomeric polymer layer. During the laser lift-off (LLO) process the elastomeric polymer layer functions as a shock absorber to reduce momentum transfer, and as an adhesive surface to hold the semiconductor structures in place on the receiving plate.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: January 2, 2024
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Chen-Fu Chu, Shih-Kai Chan, Yi-Feng Shih, David Trung Doan, Trung Tri Doan, Yoshinori Ogawa, Kohei Otake, Kazunori Kondo, Keiji Ohori, Taichi Kitagawa, Nobuaki Matsumoto, Toshiyuki Ozai, Shuhei Ueda
  • Publication number: 20230387084
    Abstract: A method for producing a light emitting diode supply substrate for transferring a plurality of light emitting diodes to a supply destination, including: a first mounting step of mounting a plurality of light emitting diodes on a supply substrate; a selective removal step of selectively removing defective light emitting diodes on the supply substrate, and a second mounting step of transferring a normal light emitting diode to a position where the defective light emitting diode has been arranged on the supply substrate. Thus, a method produces a light emitting diode supply substrate capable of producing a light emitting diode supply substrate capable of transferring a plurality of normal light emitting diodes to a supply destination.
    Type: Application
    Filed: September 27, 2021
    Publication date: November 30, 2023
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Hideo NAKAGAWA, Yoshinori OGAWA, Nobuaki MATSUMOTO, Kazunori KONDO
  • Publication number: 20230302572
    Abstract: A laser processing method that enables more precise processing using an ultrashort pulse laser. The laser processing method includes: a low fluence step of processing one or more layers to be processed sequentially from the workpiece by irradiating the layers to be processed with a pulse laser beam having a pulse width of less than 10 picoseconds at a predetermined low fluence; and a high fluence step of removing a protrusion generated on a surface of the layers to be processed by irradiation with the pulse laser beam at a high fluence higher than the low fluence, wherein the low fluence step and the high fluence step are repeated one or more times.
    Type: Application
    Filed: March 22, 2022
    Publication date: September 28, 2023
    Applicant: Sodick Co., Ltd.
    Inventors: Yoshinori OGAWA, Tetsuya IMAI, Takeshi JIN
  • Publication number: 20230134997
    Abstract: A method for transferring alignment marks between substrate systems includes providing a substrate having semiconductor devices and alignment marks in precise alignment with the semiconductor devices; and physically transferring and bonding the semiconductor devices and the alignment marks to a temporary substrate of a first substrate system. The method can also include physically transferring and bonding the semiconductor devices and the alignment marks to a mass transfer substrate of a second substrate system; and physically transferring and bonding the semiconductor devices and the alignment marks to a circuitry substrate of a third substrate system. A system for transferring alignment marks between substrate systems includes the substrate having the semiconductor devices and the alignment marks in precise alignment with the semiconductor devices. The system also includes the first substrate system, and can include the second substrate system and the third substrate system.
    Type: Application
    Filed: November 18, 2022
    Publication date: May 4, 2023
    Applicants: SemiLEDs Corporation, Shin-Etsu Chemical Co. Ltd.
    Inventors: David Trung Doan, Yoshinori Ogawa, Nobuaki Matsumoto
  • Patent number: 11626680
    Abstract: According to a certain embodiment, a pin plunger includes: a first contact member; a second contact member that faces the first contact member and is apart from the first contact member; a spring arranged between the first contact member and the second contact member; and a housing that houses the first contact member, the second contact member, and the spring. The housing comprises a bimetal inside or outside the housing. The bimetal comprises a first metal and a second metal, the first metal having a thermal expansion coefficient different from a thermal expansion coefficient of the second metal. The elastic force decreased or increased by contracting or expanding of the spring due to a temperature change is compensated with a warping force due to stretching of the first metal and the second metal.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: April 11, 2023
    Assignee: Kioxia Corporation
    Inventors: Yoshinori Ogawa, Takashi Okamura
  • Publication number: 20230079600
    Abstract: According to a certain embodiment, a pin plunger includes: a first contact member; a second contact member that faces the first contact member and is apart from the first contact member; a spring arranged between the first contact member and the second contact member; and a housing that houses the first contact member, the second contact member, and the spring. The housing comprises a bimetal inside or outside the housing. The bimetal comprises a first metal and a second metal, the first metal having a thermal expansion coefficient different from a thermal expansion coefficient of the second metal. The elastic force decreased or increased by contracting or expanding of the spring due to a temperature change is compensated with a warping force due to stretching of the first metal and the second metal.
    Type: Application
    Filed: February 9, 2022
    Publication date: March 16, 2023
    Applicant: Kioxia Corporation
    Inventors: Yoshinori OGAWA, Takashi OKAMURA
  • Publication number: 20230018855
    Abstract: A method for fabricating light emitting diode (LED) dice includes the steps of: providing a substrate [30], and forming a plurality of die sized semiconductor structures [32] on the substrate [30]. The method also includes the steps of providing a receiving plate [42] having an elastomeric polymer layer [44], placing the substrate [30] and the receiving plate [42] in close proximity with a gap [101] therebetween, and performing a laser lift-off (LLO) process by directing a uniform laser beam through the substrate [30] to the semiconductor layer [50] at an interface with the substrate [30] to lift off the semiconductor structures [32] through the gap [101] onto the elastomeric polymer layer [44]. During the laser lift-off (LLO) process the elastomeric polymer layer [44] functions as a shock absorber to reduce momentum transfer, and as an adhesive surface to hold the semiconductor structures [32] in place on the receiving plate [42].
    Type: Application
    Filed: August 3, 2022
    Publication date: January 19, 2023
    Applicants: SemiLEDs Corporation, SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: CHEN-FU CHU, SHIH-KAI CHAN, YI-FENG SHIH, DAVID TRUNG DOAN, TRUNG TRI DOAN, YOSHINORI OGAWA, KOHEI OTAKE, KAZUNORI KONDO, KEIJI OHORI, TAICHI KITAGAWA, NOBUAKI MATSUMOTO, TOSHIYUKI OZAI, SHUHEI UEDA, JUNYA ISHIZAKI
  • Patent number: 11545474
    Abstract: A method for transferring alignment marks between substrate systems includes providing a substrate having semiconductor devices and alignment marks in precise alignment with the semiconductor devices; and physically transferring and bonding the semiconductor devices and the alignment marks to a temporary substrate of a first substrate system. The method can also include physically transferring and bonding the semiconductor devices and the alignment marks to a mass transfer substrate of a second substrate system; and physically transferring and bonding the semiconductor devices and the alignment marks to a circuitry substrate of a third substrate system. A system for transferring alignment marks between substrate systems includes the substrate having the semiconductor devices and the alignment marks in precise alignment with the semiconductor devices. The system also includes the first substrate system, and can include the second substrate system and the third substrate system.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: January 3, 2023
    Assignees: SemiLEDs Corporation, Shin-Etsu Chemical Co., Ltd.
    Inventors: David Trung Doan, Yoshinori Ogawa, Nobuaki Matsumoto
  • Patent number: D1054388
    Type: Grant
    Filed: April 15, 2022
    Date of Patent: December 17, 2024
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Yoshinori Ogawa, Kazunori Kondo, Nobuaki Tomura, Nobuaki Matsumoto, Akira Sakamoto, Taichi Kitagawa