Patents by Inventor Yoshiyuki Yamamoto

Yoshiyuki Yamamoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220155141
    Abstract: An optical sensor includes a support layer, a thermoelectric conversion material portion disposed on the support layer and including a strip-shaped first material layer that converts thermal energy into electrical energy and a strip-shaped second material layer that is electrically conductive, and a light absorbing film disposed on the thermoelectric conversion material portion to form a temperature difference in a longitudinal direction of the first material layer. The first material layer includes a first region and a second region. The second material layer includes a third region and a fourth region connected to the second region. The optical sensor further includes a first electrode electrically connected to the first region, and a second electrode disposed apart from the first electrode and electrically connected to the third region. The first material layer has a width, perpendicular to the longitudinal direction, of 0.1 ?m or more.
    Type: Application
    Filed: April 13, 2020
    Publication date: May 19, 2022
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Kotaro HIROSE, Masahiro ADACHI, Yoshiyuki YAMAMOTO
  • Publication number: 20220123156
    Abstract: A photosensor includes: a support; a thermoelectric conversion material section that is disposed on a first main surface of the support and that includes a plurality of first material layers each having an elongated shape, a plurality of second material layers each having electrical conductivity and an elongated shape, and an insulating film, the first material layers and the second material layers each being configured to convert thermal energy into electrical energy; a heat sink that is disposed on a second main surface of the support and along an outer edge of the support; a light-absorbing film that is disposed in a region surrounded by inner edges of the heat sink as viewed in a thickness direction of the support so as to form temperature differences on the first main surface of the support in longitudinal directions of the first material layers.
    Type: Application
    Filed: January 3, 2022
    Publication date: April 21, 2022
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Kotaro HIROSE, Masahiro ADACHI, Yoshiyuki YAMAMOTO, Shunsuke FUJII, Fuminori MITSUHASHI
  • Patent number: 11282997
    Abstract: A plate-shaped thermoelectric conversion material having a first main surface and a second main surface on the opposite side of the first main surface is formed of semiconductor grains that are in contact with one another. The semiconductor grains each include a particle composed of a semiconductor containing an amorphous phase, and an oxidized layer covering the particle. The distance between the first main surface and the second main surface exceeds 0.5 mm.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: March 22, 2022
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Masahiro Adachi, Makoto Kiyama, Yoshiyuki Yamamoto
  • Publication number: 20220064005
    Abstract: A multilayer body includes a base portion and a graphene film. In an ion mass distribution versus depth of the multilayer body determined by time-of-flight secondary ion mass spectrometry, detection intensities of C6 ions have a maximum value at a depth of greater than 0 nm and 2.5 nm or less from an exposed surface. Detection intensities of C3 ions have a maximum value at a depth of greater than 0 nm and 3.0 nm or less from the exposed surface. Detection intensities of SiC4 ions have a maximum value at a depth of 0.5 nm or greater and 5.0 nm or less from the exposed surface. Detection intensities of SiC ions have a maximum value at a depth of 0.5 nm or greater and 10.0 nm or less from the exposed surface. Detection intensities of Si2 ions have a maximum value at a depth of 0.5 nm or greater and 10.0 nm or less from the exposed surface.
    Type: Application
    Filed: September 20, 2019
    Publication date: March 3, 2022
    Inventors: Fuminori MITSUHASHI, Yasunori TATENO, Masahiro ADACHI, Yoshiyuki YAMAMOTO
  • Publication number: 20210384397
    Abstract: A thermoelectric conversion material contains a matrix composed of a semiconductor and nanoparticles disposed in the matrix, and the nanoparticles have a lattice constant distribution ?d/d of 0.0055 or more.
    Type: Application
    Filed: August 11, 2021
    Publication date: December 9, 2021
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Masahiro Adachi, Makoto Kiyama, Yoshiyuki Yamamoto, Ryo Toyoshima
  • Patent number: 11139422
    Abstract: A thermoelectric conversion material contains a matrix composed of a semiconductor and nanoparticles disposed in the matrix, and the nanoparticles have a lattice constant distribution ?d/d of 0.0055 or more.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: October 5, 2021
    Assignee: SUMITOMO ELECTRIC INDUSTRIES. LTD.
    Inventors: Masahiro Adachi, Makoto Kiyama, Yoshiyuki Yamamoto, Ryo Toyoshima
  • Publication number: 20210265550
    Abstract: A thermoelectric conversion material is composed of a compound semiconductor including a plurality of base material elements, and includes: an amorphous phase; and crystal phases having an average grain size of more than or equal to 5 nm, each of the crystal phases being in a form of a grain. The plurality of base material elements include a specific base material element that causes an increase of a band gap by increasing a concentration of the specific base material element. An atomic concentration of the specific base material element included in the crystal phases with respect to a whole of the plurality of base material elements included in the crystal phases is higher than an atomic concentration of the specific base material element included in the compound semiconductor with respect to a whole of the plurality of base material elements included in the compound semiconductor.
    Type: Application
    Filed: March 26, 2019
    Publication date: August 26, 2021
    Applicants: SUMITOMO ELECTRIC INDUSTRIES, LTD., TOYOTA SCHOOL FOUNDATION
    Inventors: Kotaro HIROSE, Masahiro ADACHI, Takashi MATSUURA, Yoshiyuki YAMAMOTO, Tsunehiro TAKEUCHI
  • Patent number: 11094537
    Abstract: Provided are a group III nitride composite substrate having a low sheet resistance and produced with a high yield, and a method for manufacturing the same, as well as a method for manufacturing a group III nitride semiconductor device using the group III nitride composite substrate. A group III nitride composite substrate includes a group III nitride film and a support substrate formed from a material different in chemical composition from the group III nitride film. The group III nitride film is joined to the support substrate in one of a direct manner and an indirect manner. The group III nitride film has a thickness of 10 ?m or more. A sheet resistance of a group III-nitride-film-side main surface is 200 ?/sq or less.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: August 17, 2021
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Keiji Ishibashi, Akihiro Hachigo, Yuki Hiromura, Naoki Matsumoto, Seiji Nakahata, Fumitake Nakanishi, Takuya Yanagisawa, Koji Uematsu, Yuki Seki, Yoshiyuki Yamamoto, Yusuke Yoshizumi, Hidenori Mikami
  • Publication number: 20210167270
    Abstract: A thermoelectric conversion element includes: a thermoelectric conversion material portion composed of a material having a band gap; a first electrode disposed in contact with the thermoelectric conversion material portion; a second electrode disposed in contact with the thermoelectric conversion material portion and disposed to be separated from the first electrode; and a sealing portion that seals the thermoelectric conversion material portion. A partial pressure of oxygen in a region surrounding the thermoelectric conversion material portion is maintained by the sealing portion so as to be lower than a partial pressure of oxygen in an external air.
    Type: Application
    Filed: July 4, 2019
    Publication date: June 3, 2021
    Applicants: SUMITOMO ELECTRIC INDUSTRIES, LTD., TOYOTA SCHOOL FOUNDATION
    Inventors: Masahiro ADACHI, Yoshiyuki YAMAMOTO, Tsunehiro TAKEUCHI
  • Publication number: 20210091289
    Abstract: A thermoelectric conversion material includes: a base material that is a semiconductor composed of a base material element; a first additional element that is an element different from the base material element, has a vacant orbital in a d orbital or f orbital located internal to an outermost shell of the first additional element and forms a first additional level in a forbidden band of the base material; and a second additional element that is an element different from both of the base material element and the first additional element and forms a second additional level in the forbidden band of the base material. A difference is 1 between the number of electrons in an outermost shell of the second additional element and the number of electrons in at least one outermost shell of the base material element.
    Type: Application
    Filed: December 28, 2018
    Publication date: March 25, 2021
    Applicants: SUMITOMO ELECTRIC INDUSTRIES, LTD., TOYOTA SCHOOL FOUNDATION
    Inventors: Masahiro ADACHI, Kotaro HIROSE, Makoto KIYAMA, Takashi MATSUURA, Yoshiyuki YAMAMOTO, Tsunehiro TAKEUCHI, Shunsuke NISHINO
  • Publication number: 20210010131
    Abstract: A method of manufacturing a diamond substrate includes: forming an ion implantation layer at a side of a main surface of a diamond seed substrate by implanting ions into the main surface of the diamond seed substrate; producing a diamond structure by growing a diamond growth layer by a vapor phase synthesis method on the main surface of the diamond seed substrate, after implanting the ions; and performing heat treatment on the diamond structure. The performed heat treatment causes the diamond structure to be separated along the ion implantation layer into a first structure including the diamond seed substrate and failing to include the diamond growth layer, and a diamond substrate including the diamond growth layer. Thus, the method of manufacturing a diamond substrate is provided that enables a diamond substrate with a large area to be manufactured in a short time and at a low cost.
    Type: Application
    Filed: September 25, 2020
    Publication date: January 14, 2021
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Takuji Okahisa, Yoshiyuki Yamamoto, Yoshiki Nishibayashi, Natsuo Tatsumi
  • Publication number: 20200403136
    Abstract: A thermoelectric material element includes: a thermoelectric material portion composed of a thermoelectric material that includes a first crystal phase and a second crystal phase during an operation, the second crystal phase being different from the first crystal phase; a first electrode disposed in contact with the thermoelectric material portion; and a second electrode disposed in contact with the thermoelectric material portion and disposed to be separated from the first electrode. During the operation, the thermoelectric material portion includes a first temperature region having a first temperature, and a second temperature region having a second temperature lower than the first temperature of the first temperature region. A ratio of the first crystal phase to the second crystal phase in the first temperature region is larger than a ratio of the first crystal phase to the second crystal phase in the second temperature region.
    Type: Application
    Filed: February 15, 2019
    Publication date: December 24, 2020
    Applicants: SUMITOMO ELECTRIC INDUSTRIES, LTD., TOYOTA SCHOOL FOUNDATION
    Inventors: Masahiro ADACHI, Makoto KIYAMA, Takashi MATSUURA, Yoshiyuki YAMAMOTO, Do-Gyun BYEON, Tsunehiro TAKEUCHI
  • Patent number: 10822693
    Abstract: A method of manufacturing a diamond substrate includes: forming an ion implantation layer at a side of a main surface of a diamond seed substrate by implanting ions into the main surface of the diamond seed substrate; producing a diamond structure by growing a diamond growth layer by a vapor phase synthesis method on the main surface of the diamond seed substrate, after implanting the ions; and performing heat treatment on the diamond structure. The performed heat treatment causes the diamond structure to be separated along the ion implantation layer into a first structure including the diamond seed substrate and failing to include the diamond growth layer, and a diamond substrate including the diamond growth layer. Thus, the method of manufacturing a diamond substrate is provided that enables a diamond substrate with a large area to be manufactured in a short time and at a low cost.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: November 3, 2020
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takuji Okahisa, Yoshiyuki Yamamoto, Yoshiki Nishibayashi, Natsuo Tatsumi
  • Publication number: 20200203591
    Abstract: A thermoelectric conversion material contains a matrix composed of a semiconductor and nanoparticles disposed in the matrix, and the nanoparticles have a lattice constant distribution ?d/d of 0.0055 or more.
    Type: Application
    Filed: April 11, 2018
    Publication date: June 25, 2020
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Masahiro ADACHI, Makoto KIYAMA, Yoshiyuki YAMAMOTO, Ryo TOYOSHIMA
  • Publication number: 20200176305
    Abstract: Provided are a group III nitride composite substrate having a low sheet resistance and produced with a high yield, and a method for manufacturing the same, as well as a method for manufacturing a group III nitride semiconductor device using the group III nitride composite substrate. A group III nitride composite substrate includes a group III nitride film and a support substrate formed from a material different in chemical composition from the group III nitride film. The group III nitride film is joined to the support substrate in one of a direct manner and an indirect manner. The group III nitride film has a thickness of 10 ?m or more. A sheet resistance of a group III-nitride-film-side main surface is 200 ?/sq or less.
    Type: Application
    Filed: February 11, 2020
    Publication date: June 4, 2020
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Keiji ISHIBASHI, Akihiro HACHIGO, Yuki HIROMURA, Naoki MATSUMOTO, Seiji NAKAHATA, Fumitake NAKANISHI, Takuya YANAGISAWA, Koji UEMATSU, Yuki SEKI, Yoshiyuki YAMAMOTO, Yusuke YOSHIZUMI, Hidenori MIKAMI
  • Publication number: 20200105992
    Abstract: A plate-shaped thermoelectric conversion material having a first main surface and a second main surface on the opposite side of the first main surface is formed of semiconductor grains that are in contact with one another. The semiconductor grains each include a particle composed of a semiconductor containing an amorphous phase, and an oxidized layer covering the particle. The distance between the first main surface and the second main surface exceeds 0.5 mm.
    Type: Application
    Filed: April 18, 2018
    Publication date: April 2, 2020
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Masahiro ADACHI, Makoto KIYAMA, Yoshiyuki YAMAMOTO
  • Patent number: 10600676
    Abstract: Provided are a group III nitride composite substrate having a low sheet resistance and produced with a high yield, and a method for manufacturing the same, as well as a method for manufacturing a group III nitride semiconductor device using the group III nitride composite substrate. A group III nitride composite substrate includes a group III nitride film and a support substrate formed from a material different in chemical composition from the group III nitride film. The group III nitride film is joined to the support substrate in one of a direct manner and an indirect manner. The group III nitride film has a thickness of 10 ?m or more. A sheet resistance of a group III-nitride-film-side main surface is 200 ?/sq or less.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: March 24, 2020
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Keiji Ishibashi, Akihiro Hachigo, Yuki Hiromura, Naoki Matsumoto, Seiji Nakahata, Fumitake Nakanishi, Takuya Yanagisawa, Koji Uematsu, Yuki Seki, Yoshiyuki Yamamoto, Yusuke Yoshizumi, Hidenori Mikami
  • Publication number: 20200040446
    Abstract: A method of manufacturing a diamond substrate includes: forming an ion implantation layer at a side of a main surface of a diamond seed substrate by implanting ions into the main surface of the diamond seed substrate; producing a diamond structure by growing a diamond growth layer by a vapor phase synthesis method on the main surface of the diamond seed substrate, after implanting the ions; and performing heat treatment on the diamond structure. The performed heat treatment causes the diamond structure to be separated along the ion implantation layer into a first structure including the diamond seed substrate and failing to include the diamond growth layer, and a diamond substrate including the diamond growth layer. Thus, the method of manufacturing a diamond substrate is provided that enables a diamond substrate with a large area to be manufactured in a short time and at a low cost.
    Type: Application
    Filed: October 16, 2019
    Publication date: February 6, 2020
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Takuji Okahisa, Yoshiyuki Yamamoto, Yoshiki Nishibayashi, Natsuo Tatsumi
  • Patent number: 10487395
    Abstract: A method of manufacturing a diamond substrate includes: forming an ion implantation layer at a side of a main surface of a diamond seed substrate by implanting ions into the main surface of the diamond seed substrate; producing a diamond structure by growing a diamond growth layer by a vapor phase synthesis method on the main surface of the diamond seed substrate, after implanting the ions; and performing heat treatment on the diamond structure. The performed heat treatment causes the diamond structure to be separated along the ion implantation layer into a first structure including the diamond seed substrate and failing to include the diamond growth layer, and a diamond substrate including the diamond growth layer. Thus, the method of manufacturing a diamond substrate is provided that enables a diamond substrate with a large area to be manufactured in a short time and at a low cost.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: November 26, 2019
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takuji Okahisa, Yoshiyuki Yamamoto, Yoshiki Nishibayashi, Natsuo Tatsumi
  • Publication number: 20190214538
    Abstract: A thermoelectric conversion material includes: a base material that is a semiconductor; and an additive element that differs from an element constituting the base material. An additional band formed of the additive element is present within a forbidden band of the base material. A density of states of the additional band has a ratio of greater than or equal to 0.1 relative to a maximum value of a density of states of a valence band adjacent to the forbidden band of the base material.
    Type: Application
    Filed: August 29, 2017
    Publication date: July 11, 2019
    Applicants: Sumitomo Electric Industries, Ltd., Toyota School Foundation
    Inventors: Masahiro ADACHI, Makoto KIYAMA, Yoshiyuki YAMAMOTO, Tsunehiro TAKEUCHI