Patents by Inventor You Liu

You Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230014253
    Abstract: A semiconductor device includes a fin protruding from a substrate and extending in a first direction, a gate structure extending on the fin in a second direction, and a seal layer located on the sidewall of the gate structure. A first peak carbon concentration is disposed in the seal layer. A first spacer layer is located on the seal layer. A second peak carbon concentration is disposed in the first spacer layer. A second spacer layer is located on the first spacer layer.
    Type: Application
    Filed: August 2, 2021
    Publication date: January 19, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Shi-You Liu, Shih-Cheng Chen, Chia-Wei Chang, Chia-Ming Kuo, Tsai-Yu Wen, Yu-Ren Wang
  • Patent number: 11557654
    Abstract: A method for fabricating of semiconductor device is provided, including providing a substrate. A first trench isolation and a second trench isolation are formed in the substrate. A portion of the substrate is etched to have a height between a top and a bottom of the first and second trench isolations. A germanium (Ge) doped layer region is formed in the portion of the substrate. A fluorine (F) doped layer region is formed in the portion of the substrate, lower than and overlapping with the germanium doped layer region. An oxidation process is performed on the portion of the substrate to form a gate oxide layer between the first and second trench isolations.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: January 17, 2023
    Assignee: United Microelectronics Corp.
    Inventors: Chia-Jung Hsu, Chin-Hung Chen, Chun-Ya Chiu, Chih-Kai Hsu, Ssu-I Fu, Tsai-Yu Wen, Shi You Liu, Yu-Hsiang Lin
  • Publication number: 20220344522
    Abstract: This invention provides a light-concentrating structure with photosensitivity enhancing effect, including the substrate, buried layer, first electrode layer, second electrode layer, dielectric layer and interconnection structure. The substrate is equipped with a housing space; the buried layer is arranged above the substrate with the housing space; the first electrode layer is arranged above the buried layer; the second electrode layer is arranged in the middle of the first electrode layer; the dielectric layer is arranged above the second electrode layer; the interconnection structure is arranged above the substrate and the first electrode layer surrounding the dielectric layer, which forms an opening and a light-concentrating recess groove.
    Type: Application
    Filed: April 21, 2021
    Publication date: October 27, 2022
    Inventors: YUAN-TA HSIEH, CHIA-HSIN LEE, HANN-HUEI TSAI, YING-ZONG JUANG, JIAN LI, BO-YOU LIU
  • Patent number: 11387781
    Abstract: A fast start-up crystal oscillator (XO) and a fast start-up method thereof are provided. The fast start-up XO may include a XO core circuit, a frequency synthesizer, and a fast start-up interfacing circuit, wherein the frequency synthesizer may include a voltage control oscillator (VCO) and a divider. The XO core circuit generates a XO signal having a XO frequency. The VCO generates a VCO clock having a VCO frequency, and the divider generates a divided clock having a divided frequency, wherein the VCO frequency is divided by a divisor of the divider to obtain the divided frequency. The fast start-up interfacing circuit transmits the divided clock to the XO core circuit, and then generates a reference clock having the XO frequency according to the XO signal. More particularly, the VCO frequency is calibrated according to the reference clock, in order to make the divided frequency approach the XO frequency.
    Type: Grant
    Filed: August 5, 2021
    Date of Patent: July 12, 2022
    Assignee: MEDIATEK INC.
    Inventors: Keng-Meng Chang, Yao-Chi Wang, Yanjie Mo, Sen-You Liu, Chun-Ming Lin
  • Publication number: 20220209714
    Abstract: A crystal oscillator and a phase noise reduction method thereof are provided. The crystal oscillator may include a crystal oscillator core circuit, a first bias circuit and a phase noise reduction circuit, the first bias circuit is coupled to an output terminal of the crystal oscillator core circuit, and the phase noise reduction circuit is coupled to the output terminal of the crystal oscillator core circuit. In operations of the crystal oscillator, the crystal oscillator core circuit is configured to generate a sinusoidal wave. The first bias circuit is configured to provide a first voltage level to be a bias voltage of the sinusoidal wave. The phase noise reduction circuit is configured to reset the bias voltage of the sinusoidal wave in response to a voltage level of the sinusoidal wave exceeding a specific voltage range. For example, the specific voltage range is determined according to a second voltage level.
    Type: Application
    Filed: March 14, 2022
    Publication date: June 30, 2022
    Applicant: MEDIATEK INC.
    Inventors: Sen-You Liu, Chien-Wei Chen, Keng-Meng Chang, Yao-Chi Wang
  • Publication number: 20220157814
    Abstract: A semiconductor device includes a substrate having a P-type device region and an N-type device region, wherein the P-type device region includes germanium dopants. A first gate oxide layer is formed on the P-type device region and a second gate oxide layer is formed on the N-type device region. The first gate oxide layer and the second gate oxide layer are formed through a same oxidation process. The first gate oxide layer includes nitrogen dopants and the second gate oxide layer does not include the nitrogen dopants.
    Type: Application
    Filed: December 22, 2020
    Publication date: May 19, 2022
    Inventors: Shi-You Liu, Ming-Shiou Hsieh, Zih-Hsuan Huang, Tsai-Yu Wen, Yu-Ren Wang
  • Publication number: 20220140080
    Abstract: A method for fabricating p-type field effect transistor (FET) includes the steps of first providing a substrate, forming a pad layer on the substrate, forming a well in the substrate, performing an ion implantation process to implant germanium ions into the substrate to form a channel region, and then conducting an anneal process to divide the channel region into a top portion and a bottom portion. After removing the pad layer, a gate structure is formed on the substrate and a lightly doped drain (LDD) is formed adjacent to two sides of the gate structure.
    Type: Application
    Filed: January 20, 2022
    Publication date: May 5, 2022
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Shi-You Liu, Tsai-Yu Wen, Ching-I Li, Ya-Yin Hsiao, Chih-Chiang Wu, Yu-Chun Liu, Ti-Bin Chen, Shao-Ping Chen, Huan-Chi Ma, Chien-Wen Yu
  • Patent number: 11309835
    Abstract: A crystal oscillator and a phase noise reduction method thereof are provided. The crystal oscillator may include a crystal oscillator core circuit, a first bias circuit and a phase noise reduction circuit, the first bias circuit is coupled to an output terminal of the crystal oscillator core circuit, and the phase noise reduction circuit is coupled to the output terminal of the crystal oscillator core circuit. In operations of the crystal oscillator, the crystal oscillator core circuit is configured to generate a sinusoidal wave. The first bias circuit is configured to provide a first voltage level to be a bias voltage of the sinusoidal wave. The phase noise reduction circuit is configured to reset the bias voltage of the sinusoidal wave in response to a voltage level of the sinusoidal wave exceeding a specific voltage range.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: April 19, 2022
    Assignee: MEDIATEK INC.
    Inventors: Sen-You Liu, Chien-Wei Chen, Keng-Meng Chang, Yao-Chi Wang
  • Publication number: 20220093742
    Abstract: A method for fabricating of semiconductor device is provided, including providing a substrate. A first trench isolation and a second trench isolation are formed in the substrate. A portion of the substrate is etched to have a height between a top and a bottom of the first and second trench isolations. A germanium (Ge) doped layer region is formed in the portion of the substrate. A fluorine (F) doped layer region is formed in the portion of the substrate, lower than and overlapping with the germanium doped layer region. An oxidation process is performed on the portion of the substrate to form a gate oxide layer between the first and second trench isolations.
    Type: Application
    Filed: October 27, 2021
    Publication date: March 24, 2022
    Applicant: United Microelectronics Corp.
    Inventors: Chia-Jung Hsu, Chin-Hung Chen, Chun-Ya Chiu, Chih-Kai Hsu, Ssu-I Fu, Tsai-Yu Wen, Shi You Liu, Yu-Hsiang Lin
  • Publication number: 20220093741
    Abstract: A structure of semiconductor device is provided, including a substrate. First and second trench isolations are disposed in the substrate. A height of a portion of the substrate is between a top and a bottom of the first and second trench isolations. A gate insulation layer is disposed on the portion of the substrate between the first and second trench isolations. A first germanium (Ge) doped layer region is disposed in the portion of the substrate just under the gate insulation layer. A second Ge doped layer region is in the portion of the substrate, overlapping with the first Ge doped layer region to form a Ge gradient from high to low along a depth direction under the gate insulation layer. A fluorine (F) doped layer region is in the portion of the substrate, lower than and overlapping with the first germanium doped layer region.
    Type: Application
    Filed: October 27, 2021
    Publication date: March 24, 2022
    Applicant: United Microelectronics Corp.
    Inventors: Chia-Jung Hsu, Chin-Hung Chen, Chun-Ya Chiu, Chih-Kai Hsu, Ssu-I Fu, Tsai-Yu Wen, Shi You Liu, Yu-Hsiang Lin
  • Patent number: 11271078
    Abstract: A p-type field effect transistor (pFET) includes a gate structure on a substrate, a channel region in the substrate directly under the gate structure, and a source/drain region adjacent to two sides of the gate structure. Preferably, the channel region includes a top portion and a bottom portion, in which a concentration of germanium in the bottom portion is lower than a concentration of germanium in the top portion and a depth of the top portion is equal to a depth of the bottom portion.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: March 8, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Shi-You Liu, Tsai-Yu Wen, Ching-I Li, Ya-Yin Hsiao, Chih-Chiang Wu, Yu-Chun Liu, Ti-Bin Chen, Shao-Ping Chen, Huan-Chi Ma, Chien-Wen Yu
  • Publication number: 20220069773
    Abstract: A crystal oscillator and a phase noise reduction method thereof are provided. The crystal oscillator may include a crystal oscillator core circuit, a first bias circuit and a phase noise reduction circuit, the first bias circuit is coupled to an output terminal of the crystal oscillator core circuit, and the phase noise reduction circuit is coupled to the output terminal of the crystal oscillator core circuit. In operations of the crystal oscillator, the crystal oscillator core circuit is configured to generate a sinusoidal wave. The first bias circuit is configured to provide a first voltage level to be a bias voltage of the sinusoidal wave. The phase noise reduction circuit is configured to reset the bias voltage of the sinusoidal wave in response to a voltage level of the sinusoidal wave exceeding a specific voltage range.
    Type: Application
    Filed: May 4, 2021
    Publication date: March 3, 2022
    Inventors: Sen-You Liu, Chien-Wei Chen, Keng-Meng Chang, Yao-Chi Wang
  • Patent number: 11195918
    Abstract: A structure of semiconductor device is provided, including a substrate. A first trench isolation and a second trench isolation are disposed in the substrate. A height of a portion of the substrate is between a top and a bottom of the first and second trench isolations. A gate insulation layer is disposed on the portion of the substrate between the first and second trench isolations. A germanium (Ge) doped layer region is disposed in the portion of the substrate just under the gate insulation layer. A fluorine (F) doped layer region is in the portion of the substrate, lower than and overlapping with the germanium doped layer region.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: December 7, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chia-Jung Hsu, Chin-Hung Chen, Chun-Ya Chiu, Chih-Kai Hsu, Ssu-I Fu, Tsai-Yu Wen, Shi You Liu, Yu-Hsiang Lin
  • Patent number: 11107689
    Abstract: A method for fabricating semiconductor device includes the steps of: providing a substrate having a NMOS region and a PMOS region; forming a pad oxide layer on the substrate, wherein the pad oxide layer comprises a first thickness; performing an implantation process to inject germanium (Ge) into the substrate on the PMOS region; performing a first cleaning process to reduce the first thickness of the pad oxide layer on the PMOS region to a second thickness; performing an anneal process; and performing a second cleaning process to remove the pad oxide layer.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: August 31, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Shi-You Liu, Tsai-Yu Wen, Ming-Shiou Hsieh, Rong-Sin Lin, Ching-I Li, Neng-Hui Yang
  • Patent number: 10796943
    Abstract: A manufacturing method of a semiconductor structure includes the following steps. A patterned mask layer is formed on a semiconductor substrate. An isolation trench is formed in the semiconductor substrate by removing a part of the semiconductor substrate. A liner layer is conformally formed on an inner sidewall of the isolation trench. An implantation process is performed to the liner layer. The implantation process includes a noble gas implantation process. An isolation structure is at least partially formed in the isolation trench after the implantation process. An etching process is performed to remove the patterned mask layer after forming the isolation structure and expose a top surface of the semiconductor substrate. A part of the liner layer formed on the inner sidewall of the isolation trench is removed by the etching process. The implantation process is configured to modify the etch rate of the liner layer in the etching process.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: October 6, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yi-Liang Ye, Chun-Wei Yu, Yu-Ren Wang, Shi-You Liu, Shao-Hua Hsu
  • Patent number: 10773270
    Abstract: A fluid cleaning apparatus includes a driving assembly including a motor, a gear clutching assembly, a moving assembly, a swaying spray assembly, a sensing assembly, and a controlling module. The fluid cleaning apparatus integrates functions of movement actuation and spraying angle adjustment with the motor and achieves versatile spraying angles for spray-cleaning with apparatus configuration convertible between swaying motion and ceased swaying motion and/or between moving motion and ceased moving motion. Besides, self-propelled movement, spraying pressure modulation, and spraying angle adjustment can be controlled by the control module or manually remotely controlled by a user. Since the fluid cleaning apparatus of the present application saves the conventional installation cost and space needed, as well as resources consumed, for cleaning the bottom of an object to be cleaned, the fluid cleaning apparatus can be extensively applied to multiple fields.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: September 15, 2020
    Assignee: National Chung-Shan Institute of Science and Technology
    Inventors: Yi-Rong Zeng, Kuan-You Liu, Yu-Ping Wang, Chin-Cheng Wu, Min-Han Chiu, Yew-Shyang Lay
  • Publication number: 20200235208
    Abstract: A p-type field effect transistor (pFET) includes a gate structure on a substrate, a channel region in the substrate directly under the gate structure, and a source/drain region adjacent to two sides of the gate structure. Preferably, the channel region includes a top portion and a bottom portion, in which a concentration of germanium in the bottom portion is lower than a concentration of germanium in the top portion and a depth of the top portion is equal to a depth of the bottom portion.
    Type: Application
    Filed: April 1, 2020
    Publication date: July 23, 2020
    Inventors: Shi-You Liu, Tsai-Yu Wen, Ching-I Li, Ya-Yin Hsiao, Chih-Chiang Wu, Yu-Chun Liu, Ti-Bin Chen, Shao-Ping Chen, Huan-Chi Ma, Chien-Wen Yu
  • Patent number: 10700202
    Abstract: A semiconductor device is disclosed. The semiconductor device comprises a substrate, a gate structure disposed on the substrate, a spacer disposed on the substrate and covering a sidewall of the gate structure, an air gap sandwiched between the spacer and the substrate, and a source/drain region disposed in the substrate and having a faceted surface exposed from the substrate, wherein the faceted surface borders the substrate on a boundary between the air gap and the substrate.
    Type: Grant
    Filed: October 28, 2018
    Date of Patent: June 30, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Kuang-Hsiu Chen, Sung-Yuan Tsai, Chi-Hsuan Tang, Kai-Hsiang Wang, Chao-Nan Chen, Shi-You Liu, Chun-Wei Yu, Yu-Ren Wang
  • Patent number: 10651275
    Abstract: A method for fabricating p-type field effect transistor (FET) includes the steps of first providing a substrate, forming a pad layer on the substrate, forming a well in the substrate, performing an ion implantation process to implant germanium ions into the substrate to form a channel region, and then conducting an anneal process to divide the channel region into a top portion and a bottom portion. After removing the pad layer, a gate structure is formed on the substrate and a lightly doped drain (LDD) is formed adjacent to two sides of the gate structure.
    Type: Grant
    Filed: February 11, 2018
    Date of Patent: May 12, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Shi-You Liu, Tsai-Yu Wen, Ching-I Li, Ya-Yin Hsiao, Chih-Chiang Wu, Yu-Chun Liu, Ti-Bin Chen, Shao-Ping Chen, Huan-Chi Ma, Chien-Wen Yu
  • Publication number: 20200144064
    Abstract: A method for fabricating semiconductor device includes the steps of: providing a substrate having a NMOS region and a PMOS region; forming a pad oxide layer on the substrate, wherein the pad oxide layer comprises a first thickness; performing an implantation process to inject germanium (Ge) into the substrate on the PMOS region; performing a first cleaning process to reduce the first thickness of the pad oxide layer on the PMOS region to a second thickness; performing an anneal process; and performing a second cleaning process to remove the pad oxide layer.
    Type: Application
    Filed: December 3, 2018
    Publication date: May 7, 2020
    Inventors: Shi-You Liu, Tsai-Yu Wen, Ming-Shiou Hsieh, Rong-Sin Lin, Ching-I Li, Neng-Hui Yang