Patents by Inventor Youmin Wang

Youmin Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11656339
    Abstract: Apparatuses and methods for controlling a micro-mirror are provided. In one example, a controller is coupled with a micro-mirror assembly comprising a micro-mirror, an actuator, and a sensor. The controller is configured to: receive a reference signal including information of a target oscillatory rotation of the micro-mirror; receive, from the sensor, the measurement signal of an oscillatory rotation of the micro-mirror; determine, based on the measurement signal and the information included in the reference signal, a difference between the oscillatory rotation of the micro-mirror and the target oscillatory rotation; receive an input control signal; generate, based on the difference and the input control signal, an output control signal to control at least one of a phase or an amplitude of the oscillatory rotation of the micro-mirror; and transmit the output control signal to the actuator.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: May 23, 2023
    Assignee: Beijing Voyager Technology Co., Ltd.
    Inventors: Zuow-Zun Chen, Jihua Li, Lingkai Kong, Youmin Wang, Yue Lu, Quin Zhou
  • Patent number: 11650293
    Abstract: Embodiments of the disclosure provide a Light Detection and Ranging system. The system may include a light source configured to emit a light beam, a first apparatus configured to adjust the light beam and a second apparatus configured to adjust the light beam and receive the reflected light beam from a first rotatable mirror. The first apparatus may include the first rotatable mirror configured to receive and reflect the light beam, and a first actuator configured to rotate the first rotatable mirror. The second apparatus may include a second adjustable mirror configured to receive and propagate the light beam, a second actuator configured to adjust the second adjustable mirror, and a detector configured to receive the light beam reflected by the object. The first rotatable mirror is further configured to receive and reflect the light beam reflected by the object to the detector.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: May 16, 2023
    Assignee: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Youmin Wang, Lingkai Kong
  • Publication number: 20230139299
    Abstract: Embodiments of the disclosure provide a packaged micro-mirror for an optical sensing system. In some embodiments, the packaged micro-mirror may include a package substrate. In some embodiments, the packaged micro-mirror may include a micro-mirror die attached to the package substrate through a first die attach material and a second die attach material. In some embodiments, the first die attach material may have a first Young’s modulus and the second die attach material may have a second Young’s modulus higher than the first Young’s modulus. In some embodiments, at least one of the first die attach material or the second die attach material may be a conductive adhesive forming an electrical connection between the micro-mirror die and package substrate.
    Type: Application
    Filed: November 2, 2021
    Publication date: May 4, 2023
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Sae Won LEE, Youmin WANG, Gary LI
  • Publication number: 20230106000
    Abstract: Embodiments of the disclosure provide a micromachined mirror assembly for controlling optical directions in an optical sensing system. The micromachined mirror assembly may include a micro mirror configured to direct an optical signal into a plurality of directions. The micromachined mirror assembly may also include at least one actuator coupled to the micro mirror and configured to drive the micro mirror to tilt around an axis. The micromachined mirror assembly may further include one or more objects attached to the micro mirror. The one or more objects may be asymmetrically disposed with respect to the axis to create an imbalanced state of the micro mirror when the micro mirror is not driven by the at least one actuator.
    Type: Application
    Filed: December 2, 2022
    Publication date: April 6, 2023
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Youmin Wang, Yufeng Wang, Qin Zhou
  • Patent number: 11614518
    Abstract: Embodiments of the disclosure provide systems and methods for incorporating an optical sensing system in a MEMS package for real-time sensing of angular position of a MEMS mirror. The system may include an optical source configured to emit an optical signal to a backside of the MEMS mirror. The system may also include an optical detector configured to receive a returning optical signal reflected by the backside of the MEMS mirror. The system may further include at least one controller. The at least one controller may be configured to determine a scanning angle of the MEMS mirror based on a position on the optical detector where the returning optical signal is received.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: March 28, 2023
    Assignee: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Youmin Wang, Yue Lu, Zuow-Zun Chen
  • Patent number: 11610028
    Abstract: A method for designing an optical scanning mirror is provided. The method may include receiving, by a communication interface, a set of design parameters of the scanning mirror. The method may also include simulating scanning mirror oscillation, by at least one processor, based on the set of design parameters using a computer model. In certain aspects, the computer model may include a lookup table that correlates electrostatic force applied to a sample scanning mirror and angular displacement in the sample scanning mirror caused by the electrostatic force. The method may further include generating, by the at least one processor, mirror oscillation data as an output of the computer model for designing the scanning mirror. The mirror oscillation data may include a correlation of drive frequency, angular displacement, and time.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: March 21, 2023
    Assignee: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Youmin Wang, Yufeng Wang, Gary Li
  • Publication number: 20230073107
    Abstract: Embodiments of the disclosure provide an optical sensing device for a receiver in an optical sensing system. The optical sensing device includes a light concentrator configured to collect a light beam. The light concentrator includes an input aperture configured to collect the light beam, an output aperture configured to output the light beam, and a side surface in contact with the input aperture and the output aperture. The side surface is configured to reflect the collected light beam towards the output aperture. The optical sensing device also includes a photodetector placed behind the light concentrator. The photodetector is configured to receive the light beam collected through the output aperture and convert the light beam to an electrical current.
    Type: Application
    Filed: September 9, 2021
    Publication date: March 9, 2023
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Yue Lu, Youmin Wang
  • Publication number: 20230072948
    Abstract: Embodiments of the disclosure provide methods for microfabricating an omni-view peripheral scanning system. One exemplary method may include separately fabricating a reflector and a scanning MEMS mirror, and then bonding the microfabricated reflector with the scanning MEMS mirror to form the omni-view peripheral scanning system. The microfabricated reflector may include a cone-shaped bottom portion, and a via hole across the cone-shaped bottom portion. The microfabricated scanning MEMS mirror may include a MEMS actuation platform and a scanning mirror supported by the MEMS actuation platform. The scanning MEMS mirror may face the cone-shaped bottom portion of the reflector when forming the omni-view peripheral scanning system.
    Type: Application
    Filed: September 9, 2021
    Publication date: March 9, 2023
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Youmin Wang, Yue Lu
  • Publication number: 20230073060
    Abstract: Embodiments of the disclosure provide an optical sensing system for two-dimensional (2D) environmental sensing, an optical sensing method for the optical sensing system, and a transmitter. The optical sensing system includes a tunable laser source configured to emit optical signals with varying wavelengths. The optical sensing system further includes a one-dimensional (1D) grating scanner configured to rotate around a rotational axis to scan the optical signals with the varying wavelengths in a first dimension towards an environment surrounding the optical sensing system. The 1D grating scanner includes a grating structure configured to scan the optical signals with the varying wavelengths along different directions in a second dimension towards the environment at each rotation angle. The optical sensing system additionally includes a receiver configured to receive at least a portion of the optical signals with the varying wavelengths reflected from the environment.
    Type: Application
    Filed: September 7, 2021
    Publication date: March 9, 2023
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Youmin Wang, Yue Lu
  • Publication number: 20230076962
    Abstract: Embodiments of the disclosure provide an optical sensing system containing a conical lens pair, and an optical sensing method using the same. For example, the optical sensing system includes a transmitter configured to emit an optical signal toward an environment surrounding the optical sensing system. The transmitter includes a laser emitter configured to emit the optical signal, a beam shaper configured to receive the optical signal emitted by the laser emitter and redistribute a light intensity of the received optical signal away from a center of the optical signal, and a steering device configured to receive the redistributed optical signal output from the beam shaper and direct the redistributed optical signal toward the environment. The optical sensing system further includes a receiver configured to receive the optical signal returning from the environment.
    Type: Application
    Filed: September 7, 2021
    Publication date: March 9, 2023
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Youmin Wang, Yue Lu
  • Publication number: 20230072058
    Abstract: Embodiments of the disclosure provide a transmitter containing an omni-view peripheral scanning system, an omni-view peripheral scanning system, and an optical sensing method. The optical sensing system includes an optical source configured to sequentially emit optical signals. The optical sensing system further includes an omni-view peripheral scanning system configured to receive the optical signals and sequentially direct the optical signals towards an environment following a peripheral scanning pattern. The peripheral scanning system may include a scanning mirror and a top reflector. Each optical signal may pass through the top reflector towards the scanning mirror, where the scanning mirror is configured to reflect the optical signal back onto the top reflector following a spiral pattern and the top reflector is configured to direct the optical signal towards the environment.
    Type: Application
    Filed: September 9, 2021
    Publication date: March 9, 2023
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Youmin Wang, Yue Lu
  • Publication number: 20230075231
    Abstract: Embodiments of the disclosure provide a method for forming an optical sensing device for a receiver in an optical sensing system. According to the method, a light concentrator is formed in a carrier wafer. The carrier wafer is bonded with a detector wafer. The detector wafer has a photodetector such that the light concentrator aligns with and covers the photodetector. A portion of the carrier wafer is removed to expose the light concentrator and the photodetector.
    Type: Application
    Filed: December 8, 2021
    Publication date: March 9, 2023
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Yue Lu, Youmin Wang
  • Patent number: 11592533
    Abstract: A Light Detection and Ranging (LiDAR) module for a vehicle can include a semiconductor integrated circuit with a microelectromechanical system (MEMS) and a substrate, the MEMS comprising a micro-mirror assembly including a mirror and a gimbal structure. The gimbal can be configured concentrically around and coplanar with the mirror. When rotated, the gimbal drives the mirror to oscillate at or near a resonant frequency and is coupled to the mirror via mirror-gimbal connectors. A support structure can be coupled to a backside of the mirror and gimbal structures and can increase the stiffness of the mirror to help the mirror better resist dynamic deformation. To limit the added rotational moment of inertia, the support structure can be etched to form a matrix of cells (e.g., formed by a mesh of circumferential and radial ridges) such that up to approximately 90% of the support structure material forming the support structure is removed.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: February 28, 2023
    Assignee: Beijing Voyager Technology Co., Ltd.
    Inventors: Youmin Wang, Yufeng Wang, Qin Zhou, Gary Li
  • Publication number: 20230045320
    Abstract: Embodiments of the disclosure provide a micromachined mirror assembly. The micromachined mirror assembly includes a micro mirror configured to tilt around an axis and a first and a second torsion beam each having a first and a second end. The second end of the first torsion beam and the second end of the second torsion beam are mechanically coupled to the micro mirror along the axis. The micromachined mirror assembly also includes a first DC voltage applied to the first end of the first torsion beam and a second DC voltage, different from the first DC voltage, is applied to the first end of the second torsion beam.
    Type: Application
    Filed: October 20, 2022
    Publication date: February 9, 2023
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Sae Won Lee, Youmin Wang, Qin Zhou
  • Publication number: 20230041830
    Abstract: Embodiments of the disclosure include a method of scanning mirror assembly for an optical sensing system. The method may include bonding a first wafer that includes a handle to a second wafer that includes a scanning mirror layer and etching the first wafer to release the handle. The method may further include bonding a third wafer that includes an actuator layer to the second wafer, and etching the third wafer to form a first set of actuator features and a second set of actuator features from the actuator layer. The method may also include etching the second wafer to release the scanning mirror layer.
    Type: Application
    Filed: October 17, 2022
    Publication date: February 9, 2023
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Sergio Fabian Almeida Loya, Qin Zhou, Youmin Wang
  • Patent number: 11573295
    Abstract: Methods and systems for using a MEMS mirror for steering a LiDAR beam and for minimizing statically emitted light from a LiDAR system are disclosed. A LiDAR system includes a light source that emits a light beam directed at a MEMS device. The MEMS device includes a manipulable mirror that reflects the emitted light beam in a scanning pattern. The MEMS device also includes a substrate positioned adjacent to and at least partially surrounding the mirror. An attenuation layer is disposed on a top surface of the substrate and is configured to attenuate light reflected by the substrate.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: February 7, 2023
    Assignee: Beijing Voyager Technology Co., Ltd.
    Inventors: Sae Won Lee, Youmin Wang, Qin Zhou
  • Patent number: 11561289
    Abstract: Embodiments of the disclosure provide systems and methods for an optical sensing system steering optical beams with a wedge prism. An exemplary system may include a scanner configured to steer an emitted optical beam towards an object. The system may further include a wedge prism configured to receive an optical beam returned from the object and refract the returned optical beam towards the scanner. The scanner is further configured to steer the refracted optical beam to form a receiving optical beam in a direction non-parallel to the emitted optical beam.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: January 24, 2023
    Assignee: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Qin Zhou, Youmin Wang
  • Patent number: 11555998
    Abstract: Embodiments of the disclosure provide a mirror assembly for controlling optical directions in an optical sensing system. The mirror assembly may include a substrate and a micro mirror suspended over the substrate by at least one beam. The at least one beam may be mechanically coupled to the substrate. The mirror assembly may also include an actuator configured to tilt the micro mirror with respect to the substrate. The mirror assembly may further include a position sensor configured to detect a position of the micro mirror. Moreover, the mirror assembly may include a bias voltage source electrically coupled to the substrate to bias the substrate with a bias voltage.
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: January 17, 2023
    Assignee: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Sergio Almeida, Zuow-Zun Chen, Youmin Wang
  • Publication number: 20230011457
    Abstract: An excess heat-generating element is coupled to a heat sink through a heat conduction path. A thermal switch is mounted in the heat conduction path. A temperature-sensitive element is coupled to the heat conduction path on a same side of the thermal switch as the excess heat-generating element. A temperature monitor is mounted adjacent the temperature-sensitive element. A temperature controller has an input coupled to the temperature output of the temperature monitor and an output control line coupled to an input of the thermal switch. The temperature controller switches off the thermal switch, in response to detecting a temperature below a temperature threshold from the temperature output. When the thermal switch it off, it impedes heat flow from the excess heat-generating element to the heat sink, and the heat flow is redirected to increase heat flow from the excess heat-generating element to the heat-sensitive element.
    Type: Application
    Filed: July 7, 2021
    Publication date: January 12, 2023
    Inventors: Yue Lu, Yu-Ching Yeh, Youmin Wang
  • Publication number: 20230008705
    Abstract: A microelectromechanical system MEMS structure is described. A first actuator is attached to a substrate and configured to rotate the substrate along a first axis of rotation. An array of rotatable MEMS mirrors is mounted on the substrate, aligned parallel to the first axis of rotation. Each rotatable MEMS mirror is rotatable about a second axis of rotation with each second axis of rotation being perpendicular to the first axis of rotation and parallel to every other axis of rotation. An array of second actuators is configured to rotate each of the rotatable MEMS mirrors about its corresponding second axis of rotation. A controller is configured to control the first actuator to rotate the substrate about the first axis of rotation. The controller further controls the array of second actuators to rotate each rotatable MEMS mirror of the array of rotatable MEMS mirrors about its corresponding second axis of rotation.
    Type: Application
    Filed: July 7, 2021
    Publication date: January 12, 2023
    Inventors: Qin Zhou, Youmin Wang