Patents by Inventor Youmin Wang

Youmin Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11768367
    Abstract: A piezoelectric actuator including an anchor, an elastic layer having a first end coupled to the anchor, and a piezoelectric layer on the elastic layer. The elastic layer includes a solid sublayer including an elastic material and a second sublayer including a plurality of cavities. The piezoelectric layer is on the second sublayer of the elastic layer and includes a top electrode, a bottom electrode, and a piezoelectric material layer between the top electrode and the bottom electrode.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: September 26, 2023
    Assignee: Beijing Voyager Technology Co., Ltd.
    Inventors: Sae Won Lee, Youmin Wang, Yufeng Wang
  • Patent number: 11747470
    Abstract: In one example, a semiconductor integrated circuit is provided. The semiconductor integrated circuit includes a microelectromechanical system (MEMS), a substrate on which the MEMS is formed, and a controller, the MEMS including one or more micro-mirror assemblies, each micro-mirror assembly including: a micro-mirror comprising a first connection structure and a second connection structure, the first connection structure being connected to the substrate at a first pivot point, the second connection structure being connected to the substrate at a second pivot point; an actuator configured to rotate the micro-mirror; and a measurement circuit configured to measure an electrical resistance of at least one of the first connection structure or the second connection structure. The controller is configured to control the actuator of each of the one or more micro-mirror assemblies based on the electrical resistance measurements from the measurement circuits.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: September 5, 2023
    Assignee: Beijing Voyager Technology Co., Ltd.
    Inventors: Sergio Fabian Almeida Loya, Youmin Wang
  • Patent number: 11747472
    Abstract: Embodiments of the disclosure provide an optical sensing system, a range estimation system for the optical sensing system, and a method for the optical sensing system. The exemplary optical sensing system includes a transmitter configured to emit a plurality of laser pulses towards an object. The optical sensing system further includes a range estimation system configured to estimate a range between the object and the optical sensing system. The range estimation system includes an analog to digital converter (ADC) configured to convert a plurality of laser pulses returned from an object to a digital signal. The ADC has a predetermined sampling period. The exemplary system further includes a processor. The processor is configured to calculate an intensity ratio between two data points selected from the digital signal.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: September 5, 2023
    Assignee: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Qin Zhou, Youmin Wang
  • Publication number: 20230258781
    Abstract: Embodiments of the disclosure provide for a LiDAR system. The LiDAR system may generate a first FOV that is large and has rough resolution and a second FOV that is smaller and has a finer resolution. For an area of importance, such as along the horizon where pedestrians, vehicles, or other objects may be located, the second FOV with the finer resolution may be used. Using fine resolution for the area of importance may achieve a higher-degree of accuracy/safety in terms of autonomous navigation decision-making than if coarse resolution is used. Because the use of fine resolution is limited to a relatively small area, a reasonably sized photodetector and laser power may still be used to generate a long distance, high-resolution point-cloud.
    Type: Application
    Filed: February 16, 2022
    Publication date: August 17, 2023
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Yonghong GUO, Youmin WANG, Yue LU
  • Publication number: 20230258806
    Abstract: Embodiments of the disclosure provide for a LiDAR system. The LiDAR system may dynamically select a first FOV of a far-field environment to be scanned at a rough resolution and a second FOV including important information, as indicated based on object data from a previous scanning procedure, to be scanned at a fine resolution. For example, an area-of-interest, such as along the horizon where pedestrians, vehicles, or other objects may be located, may be scanned with the finer resolution. Using fine resolution for the area-of-interest may achieve a higher-degree of accuracy/safety in terms of autonomous navigation decision-making than if coarse resolution is used. Because the use of fine resolution is limited to a relatively small area, a reasonably sized photodetector and laser power may still be used to generate a long distance, high-resolution point-cloud.
    Type: Application
    Filed: February 22, 2022
    Publication date: August 17, 2023
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Yonghong GUO, Youmin WANG, Yue LU
  • Patent number: 11726183
    Abstract: Embodiments of the disclosure provide a micromachined mirror assembly for controlling optical directions in an optical sensing system. The micromachined mirror assembly includes a micro mirror and at least one piezoelectric actuator. The micro mirror is suspended over a substrate by at least one beam mechanically coupled to the micro mirror, and the at least one piezoelectric actuator is mechanically coupled to the at least one beam and is configured to drive the micro mirror via the at least one beam. The at least one piezoelectric actuator is configured to drive the micro mirror to tilt along a first axis based on a first electrical signal received by the at least one piezoelectric actuator.
    Type: Grant
    Filed: October 19, 2019
    Date of Patent: August 15, 2023
    Assignee: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Youmin Wang, Yufeng Wang, Qin Zhou
  • Publication number: 20230221440
    Abstract: Embodiments of the disclosure provide an optical sensing system, and an optical sensing method for the optical sensing system. The optical sensing system includes an integrated optical source and a receiver coupled to the integrated optical source. The integrated optical source includes a laser diode configured to emit optical signals, and a first diffraction grating unit configured to simultaneously tune wavelengths and directions of the emitted optical signals. The optical signals of different wavelengths are directed along different directions towards an environment surrounding the optical sensing system. The receiver is configured to receive at least a portion of the optical signals returned from the environment. The receiver includes a second diffracting grating unit configured to direct the received portion of optical signals with the different wavelengths along different directions towards a sensor array.
    Type: Application
    Filed: January 10, 2022
    Publication date: July 13, 2023
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: An-Chun Tien, Youmin Wang
  • Publication number: 20230204944
    Abstract: Embodiments of the disclosure provide a scanning mirror assembly. In certain configurations, the scanning mirror assembly may include a two-dimensional micro-electromechanical system (MEMS) scanning mirror, a first pair of piezoelectric electrodes coupled to the MEMS scanning mirror through a first pair of looped torsion springs, and a second pair of piezoelectric electrodes coupled to the MEMS scanning mirror through a second pair of looped torsion springs. The first pair of piezoelectric electrodes drives the MEMS scanning mirror to rotate around a first axis. The second pair of piezoelectric electrodes drives the MEMS scanning mirror to rotate around a second axis orthogonal to the first axis.
    Type: Application
    Filed: December 30, 2021
    Publication date: June 29, 2023
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Youmin Wang, Yufeng Wang, Kong Yin Ho, Gary Li
  • Publication number: 20230204945
    Abstract: Embodiments of the disclosure provide a scanning mirror assembly. In certain configurations, the scanning mirror assembly may include a two-dimensional micro-electromechanical system (MEMS) scanning mirror, a skeleton on a back surface of the MEMS scanning mirror, a first pair of piezoelectric electrodes coupled to the MEMS scanning mirror through a first pair of serpentine torsion springs, and a second pair of piezoelectric electrodes coupled to the MEMS scanning mirror through a second pair of serpentine torsion springs. The first pair of piezoelectric electrodes drives the MEMS scanning mirror and the skeleton to rotate around a first axis, and the second pair of piezoelectric electrodes drives the MEMS scanning mirror and the skeleton to rotate around a second axis orthogonal to the first axis.
    Type: Application
    Filed: December 30, 2021
    Publication date: June 29, 2023
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Youmin Wang, Yufeng Wang, Kong Yin Ho, Gary Li
  • Publication number: 20230204943
    Abstract: Embodiments of the disclosure provide a scanner for steering optical beams. In certain configurations, the scanner may include a micro-electromechanical system (MEMS) scanning mirror independently rotatable around a first axis and a second axis orthogonal to the first axis. The scanner may further include a piezoelectric actuator coupled to the MEMS scanning mirror, where the piezoelectric actuator has a first pair of piezoelectric electrodes configured to drive the MEMS scanning mirror to rotate around the first axis, and a second pair of piezoelectric electrodes configured to drive the MEMS scanning mirror to simultaneously rotate around the second axis.
    Type: Application
    Filed: December 27, 2021
    Publication date: June 29, 2023
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Youmin Wang, Yufeng Wang, Kong Yin Ho, Gary Li
  • Patent number: 11681033
    Abstract: Disclosed herein are techniques for improving the light collection efficiency in coaxial LiDAR systems. A coaxial LiDAR system includes a photodetector, a first polarization beam splitter configured to receive a returned light beam including a first linear polarization component and a second linear polarization component and direct the different linear polarization components to different respective directions, a polarization beam combiner configured to transmit the first linear polarization component from the first polarization beam splitter to the photodetector, a non-reciprocal polarization rotator configured to transmit the second linear polarization component from the first polarization beam splitter, and a second polarization beam splitter configured to reflect the second linear polarization component from the non-reciprocal polarization rotator towards the polarization beam combiner.
    Type: Grant
    Filed: May 7, 2020
    Date of Patent: June 20, 2023
    Assignee: Beijing Voyager Technology Co., Ltd.
    Inventors: Youmin Wang, Yonghong Guo, Yue Lu
  • Publication number: 20230185084
    Abstract: Embodiments of the disclosure include a mask apparatus used in an optical sensing system. The apparatus may include an optical encoding mask configured to facilitate a scanning procedure of the optical sensing system, wherein the scanning procedure comprises a plurality of scanning lines. The apparatus may further include an actuator coupled to the optical encoding mask and configured to generate a force to drive the optical encoding mask to resonate in a direction perpendicular to the scanning lines during the scanning procedure.
    Type: Application
    Filed: December 16, 2021
    Publication date: June 15, 2023
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Yue Lu, Youmin Wang
  • Publication number: 20230184903
    Abstract: Embodiments of the disclosure include a receiver of an optical sensing system. The receiver may include a mask configured to resonate during a scanning procedure performed by the optical sensing system. The receiver may also include a photodetector array positioned on a first side of the mask. The photodetector array may be configured to detect light that passes through the mask during the scanning procedure to generate a frame. The receiver may further include a light collector array aligned with the photodetector array and configured to concentrate the light that passes through the mask during the scanning procedure before directing the light to the photodetector array.
    Type: Application
    Filed: December 17, 2021
    Publication date: June 15, 2023
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Yue Lu, Youmin Wang
  • Publication number: 20230184904
    Abstract: Embodiments of the disclosure provide for a scanner of an optical sensing system. The scanner may include a polygon scanning mirror with a plurality of facets each configured to steer a light beam towards an object during a scanning procedure. The scanner may include a driver configured to rotate the polygon scanning mirror in a horizontal plane during the scanning procedure. In some embodiments, each of the plurality of facets may be tilted at a different angle with respect to the horizontal plane.
    Type: Application
    Filed: December 13, 2021
    Publication date: June 15, 2023
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Anan PAN, Yue LU, Youmin Wang
  • Publication number: 20230184588
    Abstract: Embodiments of the disclosure include a receiver of an optical sensing system. The receiver may include a Hadamard mask configured to resonate during a scanning procedure performed by the optical sensing system. The Hadamard mask may include a frame beginning pattern corresponding to a start of a frame captured during the scanning procedure. The Hadamard mask may also include a coded pattern configured to provide sub-pixelization of the frame. The receiver may also include a photodetector array positioned on a first side of the Hadamard mask. The photodetector array may be configured to detect light that passes through the Hadamard mask during the scanning procedure to generate the frame.
    Type: Application
    Filed: December 15, 2021
    Publication date: June 15, 2023
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Yue Lu, Youmin Wang
  • Publication number: 20230184906
    Abstract: Embodiments of the disclosure provide optical sensing systems, optical sensing methods, and integrated transmitter-receiver-scanner (TX-RX-scanner) modules. An exemplary optical sensing system includes an integrated TX-RX-scanner module and a printed circuit board coupled to the integrated TX-RX-scanner module. The integrated TX-RX-scanner module includes a plurality of optical components optically aligned with each other and a plurality of pins located on edges of the TX-RX-scanner module. The printed circuit board is separated from and connected to the integrated TX-RX-scanner module, and includes one or more serving electronic components connected to the optical components through the plurality of pins located on the edges of the integrated TX-RX-scanner module.
    Type: Application
    Filed: December 13, 2021
    Publication date: June 15, 2023
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Anan PAN, Youmin Wang
  • Patent number: 11673795
    Abstract: A MEMS chip package is provided with a removable cover to allow non-destructive testing. The MEMS package has a container (with walls and a bottom) and a cover. The cover has a glass pane, and is secured to the MEMS package with an elastomeric gasket mounted between the walls of the MEMS package and the cover. A number of attachment mechanisms secure the cover to the MEMS package.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: June 13, 2023
    Assignee: Beijing Voyager Technology Co., Ltd.
    Inventors: Anan Pan, Youmin Wang
  • Patent number: 11675075
    Abstract: Embodiments of the disclosure provide a system for controlling power of laser lights emitted by an optical sensing device. The system includes at least one storage device configured to store instructions and at least one processor communicatively coupled to the at least one storage device and configured to execute the instructions to perform operations. The operations include detecting an object within a field of view of the optical sensing device based on a reflected laser signal received by the optical sensing device, determining a distance of the object from the optical sensing device, determining a value indicating a total power of one or more laser beams to be incident on an aperture at the distance, and comparing the value with a predetermined tolerance value. The operations also includes adjusting a laser emission scheme to reduce the total power when the value is greater than the predetermined tolerance value.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: June 13, 2023
    Assignee: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Lingkai Kong, Yue Lu, Youmin Wang, Chao Wang
  • Publication number: 20230176217
    Abstract: Embodiments of the disclosure provide a micro shutter array, an optical sensing system, and an optical sensing method. The optical sensing system includes a laser emitter configured to sequentially emit a series of laser beams and a steering device configured to direct the series of laser beams in different directions towards an environment surrounding the optical sensing system. The optical sensing system further includes a receiver configured to receive the series of laser beams at a plurality of time points returning from the environment. The receiver includes a micro shutter array configured to sequentially open a portion of the micro shutter array at a specified location at each time point, to allow the corresponding laser beam to pass through the micro shutter array at that time point and to reflect the ambient light by a remaining portion of the micro shutter array at that time point.
    Type: Application
    Filed: December 7, 2021
    Publication date: June 8, 2023
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Yue Lu, Youmin Wang
  • Publication number: 20230176219
    Abstract: Embodiments of the disclosure provide a receiver of an optical sensing system, and an optical sensing method. The receiver includes a micro shutter array configured to sequentially receive a series of laser beams returned from an environment at a plurality of time points. The micro shutter array sequentially opens a portion of the micro shutter array at a specified location at each time point, to allow a respective laser beam to pass through the micro shutter array at that time point and to reflect the ambient light by a remaining portion of the micro shutter array at that time point. The receiver further includes a photodetector configured to detect the laser beam that passes through the micro shutter array at each time point to obtain point cloud data and an image sensor configured to receive the ambient light reflected by the remaining portion of the micro shutter array to obtain image data.
    Type: Application
    Filed: March 14, 2022
    Publication date: June 8, 2023
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Yue LU, Youmin WANG