Patents by Inventor Youmin Wang

Youmin Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230041830
    Abstract: Embodiments of the disclosure include a method of scanning mirror assembly for an optical sensing system. The method may include bonding a first wafer that includes a handle to a second wafer that includes a scanning mirror layer and etching the first wafer to release the handle. The method may further include bonding a third wafer that includes an actuator layer to the second wafer, and etching the third wafer to form a first set of actuator features and a second set of actuator features from the actuator layer. The method may also include etching the second wafer to release the scanning mirror layer.
    Type: Application
    Filed: October 17, 2022
    Publication date: February 9, 2023
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Sergio Fabian Almeida Loya, Qin Zhou, Youmin Wang
  • Patent number: 11573295
    Abstract: Methods and systems for using a MEMS mirror for steering a LiDAR beam and for minimizing statically emitted light from a LiDAR system are disclosed. A LiDAR system includes a light source that emits a light beam directed at a MEMS device. The MEMS device includes a manipulable mirror that reflects the emitted light beam in a scanning pattern. The MEMS device also includes a substrate positioned adjacent to and at least partially surrounding the mirror. An attenuation layer is disposed on a top surface of the substrate and is configured to attenuate light reflected by the substrate.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: February 7, 2023
    Assignee: Beijing Voyager Technology Co., Ltd.
    Inventors: Sae Won Lee, Youmin Wang, Qin Zhou
  • Patent number: 11561289
    Abstract: Embodiments of the disclosure provide systems and methods for an optical sensing system steering optical beams with a wedge prism. An exemplary system may include a scanner configured to steer an emitted optical beam towards an object. The system may further include a wedge prism configured to receive an optical beam returned from the object and refract the returned optical beam towards the scanner. The scanner is further configured to steer the refracted optical beam to form a receiving optical beam in a direction non-parallel to the emitted optical beam.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: January 24, 2023
    Assignee: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Qin Zhou, Youmin Wang
  • Patent number: 11555998
    Abstract: Embodiments of the disclosure provide a mirror assembly for controlling optical directions in an optical sensing system. The mirror assembly may include a substrate and a micro mirror suspended over the substrate by at least one beam. The at least one beam may be mechanically coupled to the substrate. The mirror assembly may also include an actuator configured to tilt the micro mirror with respect to the substrate. The mirror assembly may further include a position sensor configured to detect a position of the micro mirror. Moreover, the mirror assembly may include a bias voltage source electrically coupled to the substrate to bias the substrate with a bias voltage.
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: January 17, 2023
    Assignee: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Sergio Almeida, Zuow-Zun Chen, Youmin Wang
  • Publication number: 20230008705
    Abstract: A microelectromechanical system MEMS structure is described. A first actuator is attached to a substrate and configured to rotate the substrate along a first axis of rotation. An array of rotatable MEMS mirrors is mounted on the substrate, aligned parallel to the first axis of rotation. Each rotatable MEMS mirror is rotatable about a second axis of rotation with each second axis of rotation being perpendicular to the first axis of rotation and parallel to every other axis of rotation. An array of second actuators is configured to rotate each of the rotatable MEMS mirrors about its corresponding second axis of rotation. A controller is configured to control the first actuator to rotate the substrate about the first axis of rotation. The controller further controls the array of second actuators to rotate each rotatable MEMS mirror of the array of rotatable MEMS mirrors about its corresponding second axis of rotation.
    Type: Application
    Filed: July 7, 2021
    Publication date: January 12, 2023
    Inventors: Qin Zhou, Youmin Wang
  • Publication number: 20230011457
    Abstract: An excess heat-generating element is coupled to a heat sink through a heat conduction path. A thermal switch is mounted in the heat conduction path. A temperature-sensitive element is coupled to the heat conduction path on a same side of the thermal switch as the excess heat-generating element. A temperature monitor is mounted adjacent the temperature-sensitive element. A temperature controller has an input coupled to the temperature output of the temperature monitor and an output control line coupled to an input of the thermal switch. The temperature controller switches off the thermal switch, in response to detecting a temperature below a temperature threshold from the temperature output. When the thermal switch it off, it impedes heat flow from the excess heat-generating element to the heat sink, and the heat flow is redirected to increase heat flow from the excess heat-generating element to the heat-sensitive element.
    Type: Application
    Filed: July 7, 2021
    Publication date: January 12, 2023
    Inventors: Yue Lu, Yu-Ching Yeh, Youmin Wang
  • Patent number: 11543650
    Abstract: Embodiments of the disclosure include a scanning mirror assembly for an optical sensing system. The scanning mirror assembly may include a scanning mirror formed in a first layer of the scanning mirror assembly. The scanning mirror assembly may also include a MEMS actuator formed in a second layer of the scanning mirror assembly, where the first layer is a predetermined distance above the second layer. The MEMS actuator may also include a plurality of stator actuator features and a plurality of rotatable actuator features formed from a same semiconductor layer during a fabrication process.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: January 3, 2023
    Assignee: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Sergio Fabian Almeida Loya, Qin Zhou, Youmin Wang
  • Patent number: 11543651
    Abstract: Embodiments of the disclosure provide a micromachined mirror assembly for controlling optical directions in an optical sensing system. The micromachined mirror assembly may include a micro mirror configured to direct an optical signal into a plurality of directions. The micromachined mirror assembly may also include at least one actuator coupled to the micro mirror and configured to drive the micro mirror to tilt around an axis. The micromachined mirror assembly may further include one or more objects attached to the micro mirror. The one or more objects may be asymmetrically disposed with respect to the axis to create an imbalanced state of the micro mirror when the micro mirror is not driven by the at least one actuator.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: January 3, 2023
    Assignee: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Youmin Wang, Yufeng Wang, Qin Zhou
  • Patent number: 11539183
    Abstract: A laser package is mounted on the printed circuit board. At least one thermal via extends through the printed circuit board, coupled to the laser package. A thermal bridge is coupled to the at least one thermal via on the bottom of the printed circuit board. A thermal paste connects the thermal bridge to a conductive ground plane on the bottom of the printed circuit board, and to a mechanical housing.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: December 27, 2022
    Assignee: Beijing Voyager Technology Co., Ltd.
    Inventors: Yu-Ching Yeh, Yue Lu, Youmin Wang
  • Patent number: 11536951
    Abstract: Embodiments of the disclosure provide a micromachined mirror assembly. The micromachined mirror assembly includes a micro mirror configured to tilt around an axis and a first and a second torsion beam each having a first and a second end. The second end of the first torsion beam and the second end of the second torsion beam are mechanically coupled to the micro mirror along the axis. The micromachined mirror assembly also includes a first DC voltage applied to the first end of the first torsion beam and a second DC voltage, different from the first DC voltage, is applied to the first end of the second torsion beam.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: December 27, 2022
    Assignee: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Sae Won Lee, Youmin Wang, Qin Zhou
  • Patent number: 11520212
    Abstract: Embodiments of the disclosure provide an emitter array for an optical sensing system. The emitter array may include a waveguide including a plurality of waveguide branches. The emitter array may also include a plurality of grating switches positioned along each of the plurality of waveguide branches and configured to selectively turn on or off the corresponding waveguide branch for transmitting light. In certain aspects, a grating switch may include an upper grating structure configured to couple to a waveguide branch when the grating switch is activated to allow the light to emit from the waveguide branch.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: December 6, 2022
    Assignee: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Youmin Wang, Yue Lu
  • Patent number: 11520022
    Abstract: Embodiments of the disclosure provide a liquid crystal on silicon (LCOS) light modulator, an optical sensing system, and an optical sensing method. The optical sensing system includes a transmitter configured to emit an optical signal toward an environment surrounding the optical sensing system, and a receiver configured to receive the optical signal returning from the environment. The receiver further includes the LCOS light modulator and a receiving lens. The LCOS light modulator is configured to spatially modulate a polarization of the optical signal in order to allow only a spatially-selected portion of the optical signal to pass through the LCOS light modulator at one time. The receiving lens is configured to focus the spatially-selected portion of the optical signal received from the LCOS light modulator on a photodetector of the receiver.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: December 6, 2022
    Assignee: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Yue Lu, Youmin Wang
  • Publication number: 20220381585
    Abstract: Embodiments of the disclosure provide magnetic sensing systems and methods for a galvanometer scanner configured to rotate within a predetermined angular range. An exemplary magnetic sensing system includes a disc permanent magnet configured to provide a magnetic field. The magnetic sensing system further includes a Hall sensor configured to generate a voltage proportional to the strength of the magnetic field as the Hall sensor and the disc permanent magnet move relatively to each other when the galvanometer scanner rotates. One of the disc permanent magnet and the Hall sensor locates on and rotates with the galvanometer scanner and the other locates off the galvanometer scanner. The magnetic sensing system also includes at least one controller configured to determine a rotation angle of the galvanometer scanner based on the generated voltage by the Hall Sensor.
    Type: Application
    Filed: May 21, 2021
    Publication date: December 1, 2022
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Youmin Wang, Yufeng WANG
  • Publication number: 20220373657
    Abstract: A photodetector is made sufficiently large to receive an entire designed field of view (e.g., for a LiDAR system). At least one lens is mounted to direct reflected laser beams to the photodetector. A plurality of electrodes (e.g., 16, 32 or 64) are coupled to the photodetector, each electrode corresponding to a different pixel position. A processor is coupled to the plurality of electrodes and the processor is configured to detect a pixel position of a reflected laser beam by detecting which electrode produces the largest digital signal.
    Type: Application
    Filed: May 21, 2021
    Publication date: November 24, 2022
    Inventors: Qin Zhou, Youmin Wang
  • Patent number: 11510297
    Abstract: Embodiments of the disclosure provide control systems and methods for controlling a pulsed laser diode and a sensing device including a pulsed laser diode. An exemplary control system includes a distance detector configured to generate a distance signal indicating a distance between the pulsed laser diode and an object reflecting pulsed laser beams emitted by the pulsed laser diode. The control system may also include a controller configured to dynamically control power supplied to the pulse laser diode based on the distance signal.
    Type: Grant
    Filed: December 24, 2018
    Date of Patent: November 22, 2022
    Assignee: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Yue Lu, Yibo Yu, Yang Yang, Lingkai Kong, Youmin Wang, Zuow-Zun Chen
  • Patent number: 11493609
    Abstract: Methods and systems for using a dual sided MEMS mirror for determining a direction of a LiDAR beam are disclosed. In one example a MEMS package includes a dual sided MEMS mirror that is manipulable about two orthogonal axes. A first surface of the MEMS mirror is used to steer a LiDAR beam that is used to perform LiDAR imaging of an area of interest. As the mirror is moved, a second surface of the mirror reflects a sensing beam onto a position sensitive device. Data from the position sensitive device is used to determine a position of the mirror which can be used to determine a direction of the steered LiDAR beam.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: November 8, 2022
    Assignee: Beijing Voyager Technology Co., Ltd.
    Inventor: Youmin Wang
  • Publication number: 20220342200
    Abstract: Embodiments of the disclosure include a scanning mirror assembly for an optical sensing system. The scanning mirror assembly may include a scanning mirror formed in a first layer of the scanning mirror assembly. The scanning mirror assembly may also include a MEMS actuator formed in a second layer of the scanning mirror assembly, where the first layer is a predetermined distance above the second layer. The MEMS actuator may also include a plurality of stator actuator features and a plurality of rotatable actuator features formed from a same semiconductor layer during a fabrication process.
    Type: Application
    Filed: April 22, 2021
    Publication date: October 27, 2022
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Sergio Fabian Almeida Loya, Qin Zhou, Youmin Wang
  • Publication number: 20220342076
    Abstract: Embodiments of the disclosure provide magnetic sensing systems and methods for a polygon scanner. An exemplary magnetic sensing system includes a disc permanent magnet configured to provide a magnetic field. The magnetic sensing system further includes a Hall sensor configured to generate a voltage proportional to the strength of the magnetic field as the Hall sensor and the disc permanent magnet move relatively to each other when the polygon mirror rotates. One of the disc permanent magnet and the Hall sensor locates on and rotates with the polygon mirror and the other locates off the polygon mirror. The magnetic sensing system also includes at least one controller configured to determine a rotation angle of the polygon mirror based on the generated voltage by the Hall Sensor.
    Type: Application
    Filed: April 22, 2021
    Publication date: October 27, 2022
    Applicant: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Youmin Wang, Yufeng WANG
  • Publication number: 20220324698
    Abstract: In one example, an apparatus comprises a semiconductor integrated circuit, the semiconductor integrated circuit including a microelectromechanical system (MEMS) device layer and a silicon substrate, the MEMS layer including at least one micro-mirror assembly, the at least one micro-mirror assembly including a micro-mirror and electrodes. The at least one micro-mirror assembly further includes a light reduction layer formed below a surface of the silicon substrate. A method of fabricating the semiconductor integrated circuit is also provided.
    Type: Application
    Filed: April 7, 2021
    Publication date: October 13, 2022
    Inventors: Sergio Fabien Almeida Loya, Youmin Wang
  • Publication number: 20220326353
    Abstract: In one example, an apparatus comprises a semiconductor integrated circuit, the semiconductor integrated circuit including a microelectromechanical system (MEMS) device layer, an oxide layer, and a silicon substrate, the oxide layer being sandwiched between the MEMS device layer and the silicon substrate, the MEMS device layer including at least one micro-mirror assembly, the at least one micro-mirror assembly including a micro-mirror and electrodes. The at least one micro-mirror assembly further includes a light reduction layer between at least a part of the MEMS device layer and the oxide layer. A method of fabricating the semiconductor integrated circuit is also provided.
    Type: Application
    Filed: April 7, 2021
    Publication date: October 13, 2022
    Inventors: Sergio Fabien Almeida Loya, Youmin Wang