Patents by Inventor Yu-Chu Li

Yu-Chu Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160181472
    Abstract: A semiconductor light-emitting device including an N-type semiconductor layer, a plurality of P-type semiconductor layers, a light-emitting layer, and a contact layer is provided. The light-emitting layer is disposed between the N-type semiconductor layer and the whole of the P-type semiconductor layers. The P-type semiconductor layers are disposed between the contact layer and the light-emitting layer. All the P-type semiconductor layers between the light-emitting layer and the contact layer include aluminum.
    Type: Application
    Filed: November 16, 2015
    Publication date: June 23, 2016
    Inventors: Shen-Jie Wang, Yu-Chu Li
  • Publication number: 20160181475
    Abstract: A semiconductor light-emitting device including a first type doped semiconductor layer, a second type doped semiconductor layer, a light-emitting layer, and a contact layer is provided. The light-emitting layer is disposed between the first type doped semiconductor layer and the second type doped semiconductor layer. The contact layer is disposed on the second type doped semiconductor layer. The second type doped semiconductor layer is disposed between the contact layer and the light-emitting layer. Dopants in the contact layer include a group IVA element and a group IIA element. The group IVA element is an electron donor. The group IIA element is an electron acceptor. The doping concentration of the group IVA element is greater than or equal to 1020 atoms/cm3, and the doping concentration of the group IIA element is greater than or equal to 1020 atoms/cm3.
    Type: Application
    Filed: November 16, 2015
    Publication date: June 23, 2016
    Inventors: Shen-Jie Wang, Yu-Chu Li
  • Publication number: 20160181469
    Abstract: A semiconductor light-emitting device including a first N-type semiconductor layer, a P-type semiconductor layer, and a light-emitting layer is provided. The first N-type semiconductor layer contains aluminum, and the concentration of the N-type dopant thereof is greater than or equal to 5×1018 atoms/cm3. The light-emitting layer is disposed between the first N-type semiconductor layer and the P-type semiconductor layer. A manufacturing method of a semiconductor light-emitting device is also provided.
    Type: Application
    Filed: November 16, 2015
    Publication date: June 23, 2016
    Inventors: Shen-Jie Wang, Yu-Chu Li, Ching-Liang Lin
  • Publication number: 20160111604
    Abstract: A method for expanding spacings in a light-emitting element array includes the following steps of: providing a light-emitting element array unit including a stretchable supporting film, and a plurality of light-emitting elements disposed on the stretchable supporting film and arranged into a two-dimensional array; stretching the stretchable supporting film along a first direction and a second direction. The first direction and the second direction respectively correspond to a row direction and a column direction of the two-dimensional array.
    Type: Application
    Filed: October 19, 2015
    Publication date: April 21, 2016
    Inventors: YU-CHU LI, YU-HUNG LAI, TZU-YANG LIN
  • Publication number: 20160111605
    Abstract: A method for transferring light-emitting elements onto a package substrate includes: providing a light-emitting unit including a supporting substrate and a plurality of light-emitting elements, each of the light-emitting elements being removably connected to the supporting substrate and having a surface opposite to the supporting substrate; disposing the light-emitting unit spacingly above a package substrate in such a manner that the surface of each of the light-emitting elements faces the package substrate; and disconnecting the light-emitting elements from the supporting substrate to allow the light-emitting elements to fall onto the package substrate by gravity, so as to connect the light-emitting elements with the package substrate in a non-contact transferring method.
    Type: Application
    Filed: October 19, 2015
    Publication date: April 21, 2016
    Inventors: YU-CHU LI, YU-HUNG LAI, TZU-YANG LIN
  • Patent number: 9318676
    Abstract: The present invention provides a light emitting device, which comprises an epitaxial stack structure, a II/V group compound contact layer directly formed on the epitaxial stack structure, a protrusion or recess type structure directly formed on the II/V group compound contact layer, and a conductive layer covering the protrusion or recess type structure.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: April 19, 2016
    Assignee: HUGA OPTOTECH INC.
    Inventors: Tzong-Liang Tsai, Yu-Chu Li, Chiung-Chi Tsai
  • Patent number: 9299894
    Abstract: A wavelength converting substance is made of semiconductor material. The wavelength converting substance is suitable for absorbing an exciting light with the wavelength range falling between 300 nanometers and 490 nanometers and converting the exciting light to an emitted light with wavelength range falling between 450 nanometers and 750 nanometers.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: March 29, 2016
    Assignee: Genesis Photonics Inc.
    Inventors: Yun-Li Li, Yu-Chu Li, Cheng-Yen Chen
  • Publication number: 20160035934
    Abstract: A nitride semiconductor structure and a semiconductor light emitting device are revealed. The semiconductor light emitting device includes a substrate disposed with a first type doped semiconductor layer and a second type doped semiconductor layer. A light emitting layer is disposed between the first type doped semiconductor layer and the second type doped semiconductor layer. The second type doped semiconductor layer is doped with a second type dopant at a concentration larger than 5×1019 cm?3 while a thickness of the second type doped semiconductor layer is smaller than 30 nm. Thereby the semiconductor light emitting device provides a better light emitting efficiency.
    Type: Application
    Filed: September 11, 2015
    Publication date: February 4, 2016
    Inventors: Yen-Lin Lai, Jyun-De Wu, Yu-Chu Li
  • Patent number: 9147800
    Abstract: A nitride semiconductor structure and a semiconductor light emitting device are revealed. The semiconductor light emitting device includes a substrate disposed with a first type doped semiconductor layer and a second type doped semiconductor layer. A light emitting layer is disposed between the first type doped semiconductor layer and the second type doped semiconductor layer. The second type doped semiconductor layer is doped with a second type dopant at a concentration larger than 5×1019 cm?3 while a thickness of the second type doped semiconductor layer is smaller than 30 nm. Thereby the semiconductor light emitting device provides a better light emitting efficiency.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: September 29, 2015
    Assignee: Genesis Photonics Inc.
    Inventors: Yen-Lin Lai, Jyun-De Wu, Yu-Chu Li
  • Publication number: 20150263226
    Abstract: A nitride semiconductor structure and a semiconductor light emitting device including the same are revealed. The nitride semiconductor structure mainly includes a stress control layer disposed between a light emitting layer and a p-type carrier blocking layer. The p-type carrier blocking layer is made from AlxGa1-xN (0<x<1) while the stress control layer is made from AlxInyGa1-x-yN (0<x<1, 0<y<1, 0<x+y<1). The light emitting layer has a multiple quantum well structure formed by a plurality of well layers and barrier layers stacked alternately. There is one well layer disposed between the two barrier layers. Thereby the stress control layer not only improves crystal quality degradation caused by lattice mismatch between the p-type carrier blocking layer and the light emitting layer but also reduces effects of compressive stress on the well layer caused by material differences.
    Type: Application
    Filed: June 1, 2015
    Publication date: September 17, 2015
    Inventors: Chi-Feng Huang, Ching-Liang Lin, Shen-Jie Wang, Jyun-De Wu, Yu-Chu Li, Chun-Chieh Lee
  • Publication number: 20150179874
    Abstract: A light emitting diode (LED) structure includes a substrate, a N-type semiconductor layer, a light emitting layer and a P-type semiconductor layer. The N-type semiconductor layer is disposed on the substrate. The light emitting layer is adapted to emit a light with dominant wavelength between 365 nm and 490 nm and disposed on the N-type semiconductor layer. The P-type semiconductor layer is disposed on the blue light emitting layer and includes a P—AlGaN layer. A thickness of the P—AlGaN layer is more than 85% a thickness of the P-type semiconductor layer.
    Type: Application
    Filed: April 21, 2014
    Publication date: June 25, 2015
    Applicant: GENESIS PHOTONICS INC.
    Inventor: Yu-Chu Li
  • Patent number: 9048364
    Abstract: A nitride semiconductor structure and a semiconductor light emitting device including the same are revealed. The nitride semiconductor structure mainly includes a stress control layer disposed between a light emitting layer and a p-type carrier blocking layer. The p-type carrier blocking layer is made from AlxGa1?xN (0<x<1) while the stress control layer is made from AlxInyGa1?x?yN (0<x<1, 0<y<1, 0<x+y<1). The light emitting layer has a multiple quantum well structure formed by a plurality of well layers and barrier layers stacked alternately. There is one well layer disposed between the two barrier layers. Thereby the stress control layer not only improves crystal quality degradation caused by lattice mismatch between the p-type carrier blocking layer and the light emitting layer but also reduces effects of compressive stress on the well layer caused by material differences.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: June 2, 2015
    Assignee: Genesis Photonics Inc.
    Inventors: Chi-Feng Huang, Ching-Liang Lin, Shen-Jie Wang, Jyun-De Wu, Yu-Chu Li, Chun-Chieh Lee
  • Patent number: 8872157
    Abstract: A nitride semiconductor structure and a semiconductor light emitting device including the same are revealed. The nitride semiconductor structure includes a light emitting layer disposed between a n-type semiconductor layer and a p-type semiconductor layer, and a hole supply layer disposed between the light emitting layer and the p-type semiconductor layer. The hole supply layer is made from material InxGa1-xN (0<x<1) and is doped with a Group IV-A element at a concentration ranging from 1017 to 1020 cm?3. By being doped with the Group IV-A element, the concentration of holes is increased and inactivation caused by Mg—H bonds is reduced. Thus Mg is activated as acceptors and the light emitting efficiency is further increased.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: October 28, 2014
    Assignee: Genesis Photonics Inc.
    Inventors: Jyun-De Wu, Yu-Chu Li
  • Patent number: 8766307
    Abstract: A light emitting diode device includes an epitaxial substrate, at least one passivation structure, at least one void, a semiconductor layer, a first type doping semiconductor layer, a light-emitting layer and a second type doping semiconductor layer. The passivation structure is disposed on the epitaxial substrate and has an outer surface. The void is located at the passivation structure and at least covering 50% of the outer surface of the passivation structure. The semiconductor layer is disposed on the epitaxial substrate and encapsulating the passivation structure and the void. The first type doping semiconductor layer is disposed on the semiconductor layer. The light-emitting layer is disposed on the first type doping semiconductor layer. The second type doping semiconductor layer is disposed on the light emitting layer.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: July 1, 2014
    Assignee: Genesis Photonics Inc.
    Inventors: Yen-Lin Lai, Shen-Jie Wang, Yu-Chu Li, Jyun-De Wu, Ching-Liang Lin, Kuan-Yung Liao
  • Patent number: 8766293
    Abstract: A light-emitting device includes a first cladding layer, a light-emitting layer, a second cladding layer, an epitaxial structure including an indium-containing oxide, and an electrode unit for supplying external electricity, The electrode unit includes a first electrode disposed to be electrically connected to the first cladding layer, and a second electrode disposed above the epitaxial structure to be electrically connected to the second cladding layer through the epitaxial structure such that the external electricity is permitted to be transmitted to the light-emitting layer through the first and second electrodes. A method for manufacturing the light-emitting device is also disclosed.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: July 1, 2014
    Assignee: Genesis Photonics Inc.
    Inventors: Jyun-De Wu, Yu-Chu Li
  • Publication number: 20140167096
    Abstract: The present invention provides a light emitting device, which comprises an epitaxial stack structure, a II/V group compound contact layer directly formed on the epitaxial stack structure, a protrusion or recess type structure directly formed on the II/V group compound contact layer, and a conductive layer covering the protrusion or recess type structure.
    Type: Application
    Filed: February 24, 2014
    Publication date: June 19, 2014
    Applicant: HUGA OPTOTECH INC.
    Inventors: Tzong-Liang TSAI, Yu-Chu LI, Chiung-Chi TSAI
  • Publication number: 20140138616
    Abstract: A nitride semiconductor structure and a semiconductor light emitting device including the same are revealed. The nitride semiconductor structure mainly includes a stress control layer disposed between a light emitting layer and a p-type carrier blocking layer. The p-type carrier blocking layer is made from AlxGa1?xN (0<x<1) while the stress control layer is made from AlxInyGa1?x?yN (0<x<1, 0<y<1, 0<x+y<1). The light emitting layer has a multiple quantum well structure formed by a plurality of well layers and barrier layers stacked alternately. There is one well layer disposed between the two barrier layers. Thereby the stress control layer not only improves crystal quality degradation caused by lattice mismatch between the p-type carrier blocking layer and the light emitting layer but also reduces effects of compressive stress on the well layer caused by material differences.
    Type: Application
    Filed: August 9, 2013
    Publication date: May 22, 2014
    Applicant: Genesis Photonics Inc.
    Inventors: CHI-FENG HUANG, CHING-LIANG LIN, SHEN-JIE WANG, JYUN-DE WU, YU-CHU LI, CHUN-CHIEH LEE
  • Publication number: 20140138619
    Abstract: A nitride semiconductor structure and a semiconductor light emitting device are revealed. The semiconductor light emitting device includes a substrate disposed with a first type doped semiconductor layer and a second type doped semiconductor layer. A light emitting layer is disposed between the first type doped semiconductor layer and the second type doped semiconductor layer. The second type doped semiconductor layer is doped with a second type dopant at a concentration larger than 5×1019 cm?3 while a thickness of the second type doped semiconductor layer is smaller than 30 nm. Thereby the semiconductor light emitting device provides a better light emitting efficiency.
    Type: Application
    Filed: August 9, 2013
    Publication date: May 22, 2014
    Applicant: GENESIS PHOTONICS INC.
    Inventors: YEN-LIN LAI, JYUN-DE WU, YU-CHU LI
  • Publication number: 20140138618
    Abstract: A nitride semiconductor structure and a semiconductor light emitting device including the same are revealed. The nitride semiconductor structure includes a light emitting layer disposed between a n-type semiconductor layer and a p-type semiconductor layer, and a hole supply layer disposed between the light emitting layer and the p-type semiconductor layer. The hole supply layer is made from material InxGa1-xN (0<x<1) and is doped with a Group IV-A element at a concentration ranging from 1017 to 10 cm?3. By being doped with the Group IV-A element, the concentration of holes is increased and inactivation caused by Mg—H bonds is reduced. Thus Mg is activated as acceptors and the light emitting efficiency is further increased.
    Type: Application
    Filed: August 9, 2013
    Publication date: May 22, 2014
    Applicant: GENESIS PHOTONICS INC.
    Inventors: JYUN-DE WU, YU-CHU LI
  • Publication number: 20140131751
    Abstract: A wavelength converting substance is made of semiconductor material. The wavelength converting substance is suitable for absorbing an exciting light with the wavelength range falling between 300 nanometers and 490 nanometers and converting the exciting light to an emitted light with wavelength range falling between 450 nanometers and 750 nanometers.
    Type: Application
    Filed: May 29, 2013
    Publication date: May 15, 2014
    Applicant: GENESIS PHOTONICS INC.
    Inventors: Yun-Li Li, Yu-Chu Li, Cheng-Yen Chen