Patents by Inventor Yu-Lien Huang

Yu-Lien Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220367256
    Abstract: A method of making a semiconductor device includes forming a conductive element over a substrate, depositing a layer of dielectric material over the conductive element, etching the layer of dielectric material to define an opening, where a dimension of the opening adjacent the conductive element has a first width measured in a direction parallel to a top surface of the substrate, reducing the first width by depositing a dielectric liner in the opening, etching the dielectric liner to expose a portion of the conductive element, where a dimension of the conductive element exposed has a second width less than the first width, depositing a conductive material in the opening, where the dielectric layer is between the conductive material and the layer of dielectric material, and the conductive material is electrically connected to the conductive element.
    Type: Application
    Filed: November 16, 2021
    Publication date: November 17, 2022
    Inventor: Yu-Lien HUANG
  • Publication number: 20220359745
    Abstract: In an embodiment, a structure includes: a gate stack over a channel region of a substrate; a source/drain region adjacent the channel region; a first inter-layer dielectric (ILD) layer over the source/drain region; a silicide between the first ILD layer and the source/drain region, the silicide contacting a top surface of the source/drain region and a bottom surface of the source/drain region; and a first source/drain contact having a first portion and a second portion, the first portion of the first source/drain contact disposed between the silicide and the first ILD layer, the second portion of the first source/drain contact extending through the first ILD layer and contacting the silicide.
    Type: Application
    Filed: July 25, 2022
    Publication date: November 10, 2022
    Inventors: Yu-Lien Huang, Guan-Ren Wang, Ching-Feng Fu
  • Publication number: 20220359650
    Abstract: In an embodiment, a device includes: a first source/drain region; a second source/drain region; an inter-layer dielectric (ILD) layer over the first source/drain region and the second source/drain region; a first source/drain contact extending through the ILD layer, the first source/drain contact connected to the first source/drain region; a second source/drain contact extending through the ILD layer, the second source/drain contact connected to the second source/drain region; and an isolation feature between the first source/drain contact and the second source/drain contact, the isolation feature including a dielectric liner and a void, the dielectric liner surrounding the void.
    Type: Application
    Filed: July 27, 2022
    Publication date: November 10, 2022
    Inventors: Yu-Lien Huang, Guan-Ren Wang, Ching-Feng Fu
  • Publication number: 20220359693
    Abstract: A semiconductor device including source/drain contacts extending into source/drain regions, below topmost surfaces of the source/drain regions, and methods of forming the same are disclosed. In an embodiment, a semiconductor device includes a semiconductor substrate; a first channel region over the semiconductor substrate; a first gate stack over the semiconductor substrate and surrounding four sides of the first channel region; a first epitaxial source/drain region adjacent the first gate stack and the first channel region; and a first source/drain contact coupled to the first epitaxial source/drain region, a bottommost surface of the first source/drain contact extending below a topmost surface of the first channel region.
    Type: Application
    Filed: July 25, 2022
    Publication date: November 10, 2022
    Inventors: Guan-Ren Wang, Yun-Min Chang, Yu-Lien Huang, Ching-Feng Fu
  • Publication number: 20220359210
    Abstract: An embodiment method includes: forming a gate stack over a channel region; growing a source/drain region adjacent the channel region; depositing a first ILD layer over the source/drain region and the gate stack; forming a source/drain contact through the first ILD layer to physically contact the source/drain region; forming a gate contact through the first ILD layer to physically contact the gate stack; performing an etching process to partially expose a first sidewall and a second sidewall, the first sidewall being at a first interface of the source/drain contact and the first ILD layer, the second sidewall being at a second interface of the gate contact and the first ILD layer; forming a first conductive feature physically contacting the first sidewall and a first top surface of the source/drain contact; and forming a second conductive feature physically contacting the second sidewall and a second top surface of the gate contact.
    Type: Application
    Filed: July 21, 2022
    Publication date: November 10, 2022
    Inventors: Yu-Lien Huang, Guan-Ren Wang, Ching-Feng Fu
  • Publication number: 20220359516
    Abstract: A semiconductor device includes a substrate, a semiconductor fin, a shallow trench isolation (STI) structure, an air spacer, and a gate structure. The semiconductor fin extends upwardly from the substrate. The STI structure laterally surrounds a lower portion of the semiconductor fin. The air spacer is interposed the STI structure and the semiconductor fin. The gate structure extends across the semiconductor fin.
    Type: Application
    Filed: May 6, 2021
    Publication date: November 10, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Lien HUANG, Che-Ming HSU, Ching-Feng FU, Huan-Just LIN
  • Publication number: 20220352352
    Abstract: A method includes forming a first multilayer interconnection structure over a carrier substrate. A first interlayer dielectric (ILD) layer is deposited over the first multilayer interconnection structure. A first source/drain contact is formed in the first ILD layer. After forming the first source/drain contact, a semiconductive layer is formed over the first source/drain contact and the first ILD layer. The semiconductive layer is patterned to form a semiconductor fin over the first source/drain contact. A gate structure is formed across the semiconductor fin. The semiconductor fin is patterned to form a first recess and a second recess in the semiconductor fin, such that the first recess exposes the first source/drain contact. First and second source/drain epitaxial structures are respectively formed in the first and second recesses of the semiconductor fin such that the first source/drain epitaxial structure is electrically connected to the first source/drain contact.
    Type: Application
    Filed: August 12, 2021
    Publication date: November 3, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Yu-Lien HUANG
  • Publication number: 20220352330
    Abstract: Embodiments disclosed herein relate generally to methods for forming recesses in epitaxial source/drain regions for forming conductive features. In some embodiments, the recesses are formed in a two-step etching process including an anisotropic etch to form a vertical opening and an isotropic etch to expand an end portion of the vertical opening laterally and vertically. The recesses can have increased contact area between the source/drain region and the conductive feature, and can enable reduced resistance therebetween.
    Type: Application
    Filed: July 18, 2022
    Publication date: November 3, 2022
    Inventor: Yu-Lien Huang
  • Publication number: 20220336663
    Abstract: A semiconductor structure includes a gate structure, a source region, a drain region, and an isolation structure. The gate structure includes a first portion, a second portion and a third portion. The first portion extends in a first direction, and the second portion and the third portion extend in a second direction. The second portion and the third portion are disposed at opposite ends of the first portion. The source region and the drain region are separated by the gate structure. The isolation structure surrounds the gate structure, the source region and the drain region. The first portion has a first sidewall, the second portion has a second sidewall, and the third portion has a third sidewall. The first sidewall, the second sidewall and the third sidewall are parallel to the first direction and aligned with each other to form a straight line.
    Type: Application
    Filed: April 16, 2021
    Publication date: October 20, 2022
    Inventor: YU-LIEN HUANG
  • Publication number: 20220336666
    Abstract: A method of forming a semiconductor device includes: forming a gate structure over a fin that protrudes above a substrate; forming source/drain regions over the fin on opposing sides of the gate structure; forming a first dielectric layer and a second dielectric layer successively over the source/drain regions; performing a first etching process to form an opening in the first dielectric layer and in the second dielectric layer, where the opening exposes an underlying electrically conductive feature; after performing the first etching process, performing a second etching process to enlarge a lower portion of the opening proximate to the substrate; and forming a contact plug in the opening after the second etching process.
    Type: Application
    Filed: June 29, 2022
    Publication date: October 20, 2022
    Inventors: Yu-Lien Huang, Guan-Ren Wang, Ching-Feng Fu, Yun-Min Chang
  • Publication number: 20220336288
    Abstract: A method includes forming a first inter-layer dielectric (ILD) layer over source and drain regions of a semiconductor structure; forming a first mask material over the first ILD layer; etching first openings in the first mask material; filling the first openings with a fill material; etching second openings in the fill material; filling the second openings with a second mask material; removing the fill material; and etching the first ILD layer using the first mask material and the second mask material as an etching mask to form openings in the first ILD layer that expose portions of the source and drain regions of the semiconductor structure.
    Type: Application
    Filed: April 16, 2021
    Publication date: October 20, 2022
    Inventors: Ching-Feng Fu, Yu-Lien Huang, Tsai-Jung Ho, Huan-Just Lin
  • Publication number: 20220320081
    Abstract: Various semiconductor techniques described herein enable reductions in one or more sizes of a fin field-effect transistor (finFET) and/or increasing one or more sizes of a finFET. In various implementations described herein, a material may be used to reduce the one or more x-direction sizes of the finFET by selective deposition while enabling the one or more y-direction sizes of the finFET to be increased or enlarged by etching. The x-direction size of a source or drain of the finFET, the x-direction size of an active region of the finFET, and/or the x-direction size of a polysilicon region of the finFET may be increased by selective deposition of a boron nitride (BxNy), a boron carbide (BxC), a boron oxide (BxOy) (e.g., boric oxide (B2O3), a fluorocarbon (CxFy) polymer, and/or another material.
    Type: Application
    Filed: August 27, 2021
    Publication date: October 6, 2022
    Inventor: Yu-Lien HUANG
  • Publication number: 20220320084
    Abstract: An integrated circuit structure includes a lower interconnect structure, a first semiconductor fin, a lower gate structure, first source/drain structures, an upper gate structure, and an upper interconnect structure. The first semiconductor fin is above the lower interconnect structure. The lower gate structure is under the first semiconductor fin and extends across the first semiconductor fin. The first source/drain structures are in the first semiconductor fin and on opposite sides of the lower gate structure. The first source/drain structures forms a lower transistor with the lower gate structure. The upper gate structure is above the first semiconductor fin and extends across the first semiconductor fin. The upper gate structure forms an upper transistor with the first source/drain structures. The upper interconnect structure is above the upper gate.
    Type: Application
    Filed: July 26, 2021
    Publication date: October 6, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Yu-Lien HUANG
  • Publication number: 20220310603
    Abstract: A device includes a channel layer, a gate structure, a source/drain epitaxial structure, and a gate via. The gate structure wraps around the channel layer. The gate structure includes a gate dielectric layer and a gate electrode over the gate dielectric layer. The source/drain epitaxial structure is adjacent the gate structure and is electrically connected to the channel layer. The gate via is under the gate structure and is in contact with a bottom surface of the gate electrode.
    Type: Application
    Filed: July 2, 2021
    Publication date: September 29, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Yu-Lien HUANG
  • Publication number: 20220302298
    Abstract: A semiconductor device and method of manufacture are provided which help to support contacts while material is removed to form air gaps. In embodiments a contact is formed with an enlarged base to help support overlying portions of the contact. In other embodiments a scaffold material may also be placed prior to the formation of the air gaps in order to provide additional support.
    Type: Application
    Filed: June 6, 2022
    Publication date: September 22, 2022
    Inventors: Ching-Feng Fu, Guan-Ren Wang, Yun-Min Chang, Yu-Lien Huang
  • Publication number: 20220302300
    Abstract: A semiconductor device includes a substrate provided with an electronic device, an interlayer dielectric (ILD) layer formed over the electronic device, a wiring pattern formed on the ILD layer and a contact formed in the ILD layer and physically and electrically connecting the wiring pattern to a conductive region of the electronic device. An insulating liner layer is provided on sidewalls of the contact between the contact and the ILD layer. A height of the insulating liner layer measured from a top of the conductive region of the electronic device is less than 90% of a height of the contact measured between the top of the conductive region and a level of an interface between the ILD layer and the wiring pattern.
    Type: Application
    Filed: June 6, 2022
    Publication date: September 22, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Lien HUANG, Meng-Chun CHANG
  • Publication number: 20220293613
    Abstract: The present disclosure provides example embodiments relating to conductive features, and methods of forming the conductive features, that have differing dimensions. In an embodiment, a structure includes a substrate, a dielectric layer over the substrate, and first and second conductive features through the dielectric layer to first and second source/drain regions, respectively, on the substrate. The first conductive feature has a first length along a longitudinal axis of the first conductive feature and a first width perpendicular to the first length. The second conductive feature has a second length along a longitudinal axis of the second conductive feature and a second width perpendicular to the second length. The longitudinal axis of the first conductive feature is aligned with the longitudinal axis of the second conductive feature. The first width is greater than the second width, and the first length is less than the second length.
    Type: Application
    Filed: May 27, 2022
    Publication date: September 15, 2022
    Inventor: Yu-Lien Huang
  • Publication number: 20220270931
    Abstract: A method may include forming a mask layer on top of a first dielectric layer formed on a first source/drain and a second source/drain, and creating an opening in the mask layer and the first dielectric layer that exposes portions of the first source/drain and the second source/drain. The method may include filling the opening with a metal layer that covers the exposed portions of the first source/drain and the second source/drain, and forming a gap in the metal layer to create a first metal contact and a second metal contact. The first metal contact may electrically couple to the first source/drain and the second metal contact may electrically couple to the second source/drain. The gap may separate the first metal contact from the second metal contact by less than nineteen nanometers.
    Type: Application
    Filed: May 10, 2022
    Publication date: August 25, 2022
    Inventors: Yu-Lien HUANG, Ching-Feng FU, Huan-Just LIN, Fu-Sheng LI, Tsai-Jung HO, Bor Chiuan HSIEH, Guan-Xuan CHEN, Guan-Ren WANG
  • Patent number: 11417740
    Abstract: Embodiments disclosed herein relate generally to methods for forming recesses in epitaxial source/drain regions for forming conductive features. In some embodiments, the recesses are formed in a two-step etching process including an anisotropic etch to form a vertical opening and an isotropic etch to expand an end portion of the vertical opening laterally and vertically. The recesses can have increased contact area between the source/drain region and the conductive feature, and can enable reduced resistance therebetween.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: August 16, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventor: Yu-Lien Huang
  • Publication number: 20220238375
    Abstract: A method includes using a second hard mask layer over a gate stack to protect the gate electrode during etching a self-aligned contact. The second hard mask is formed over a first hard mask layer, where the first hard mask layer has a lower etch selectivity than the second hard mask layer.
    Type: Application
    Filed: April 11, 2022
    Publication date: July 28, 2022
    Inventor: Yu-Lien Huang