Patents by Inventor Yu-Lin Yang

Yu-Lin Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9991647
    Abstract: A plug connector includes a dielectric body having a docking surface, a circuit board mounted to a rear of the dielectric body, a plurality of first terminals and a second terminal. The plurality of the first terminals are fastened to the dielectric body. Top surfaces of front ends of the plurality of the first terminals are exposed to the docking surface of the dielectric body. Rear ends of the plurality of the first terminals project beyond a rear surface of the dielectric body and are soldered to the circuit board. The second terminal is fastened to the dielectric body. A front end of the second terminal elastically projects beyond the docking surface of the dielectric body, and a rear end of the second terminal projects beyond the rear surface of the dielectric body and is soldered to the circuit board.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: June 5, 2018
    Assignee: CHENG UEI PRECISION INDUSTRY CO., LTD.
    Inventors: Yu-Lin Yang, Feng-Tian Liu
  • Publication number: 20180151717
    Abstract: A semiconductor device includes a fin field effect transistor (FinFET). The FinFET includes a channel disposed on a fin, a gate disposed over the channel and a source and drain. The channel includes at least two pairs of a first semiconductor layer and a second semiconductor layer formed on the first semiconductor layer. The first semiconductor layer has a different lattice constant than the second semiconductor layer. A thickness of the first semiconductor layer is three to ten times a thickness of the second semiconductor layer at least in one pair.
    Type: Application
    Filed: February 10, 2017
    Publication date: May 31, 2018
    Inventors: Chao-Ching CHENG, Chih Chieh YEH, Cheng-Hsien WU, Hung-Li CHIANG, Jung-Piao CHIU, Tzu-Chiang CHEN, Tsung-Lin LEE, Yu-Lin YANG, I-Sheng CHEN
  • Publication number: 20180090570
    Abstract: Transistor structures and methods of forming transistor structures are provided. The transistor structures include alternating layers of a first epitaxial material and a second epitaxial material. In some embodiments, one of the first epitaxial material and the second epitaxial material may be removed for one of an n-type or p-type transistor. A bottommost layer of the first epitaxial material and the second epitaxial material maybe be removed, and sidewalls of one of the first epitaxial material and the second epitaxial material may be indented or recessed.
    Type: Application
    Filed: November 20, 2017
    Publication date: March 29, 2018
    Inventors: Cheng-Yi Peng, Hung-Li Chiang, Yu-Lin Yang, Chih Chieh Yeh, Yee-Chia Yeo, Chi-Wen Liu
  • Patent number: 9853101
    Abstract: Transistor structures and methods of forming transistor structures are provided. The transistor structures include alternating layers of a first epitaxial material and a second epitaxial material. In some embodiments, one of the first epitaxial material and the second epitaxial material may be removed for one of an n-type or p-type transistor. A bottommost layer of the first epitaxial material and the second epitaxial material maybe be removed, and sidewalls of one of the first epitaxial material and the second epitaxial material may be indented or recessed.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: December 26, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Yi Peng, Hung-Li Chiang, Yu-Lin Yang, Chih Chieh Yeh, Yee-Chia Yeo, Chi-Wen Liu
  • Patent number: 9768301
    Abstract: A semiconductor device includes a semiconductor substrate having a first region and a second region. The first region includes a first set of fin structures, the first set of fin structures comprising a first set of epitaxial anti-punch-through features of a first conductivity type. The first region further includes a first set of transistors formed over the first set of fin structures. The second region includes a second set of fin structures, the second set of fin structures comprising a second set of epitaxial anti-punch-through features of a second conductivity type opposite to the first conductivity type. The second region further includes a second set of transistors formed over the second set of fin structures. The first set of epitaxial anti-punch-through features and the second set of epitaxial anti-punch-through features are substantially co-planar.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: September 19, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Yi Peng, Chia-Cheng Ho, Chih-Sheng Chang, Yee-Chia Yeo, Yu-Lin Yang
  • Patent number: 9728461
    Abstract: A method for fabricating a semiconductor device includes forming a first gate stack over a first fin feature and second gate stack over a second fin feature, removing the first gate stack to form a first gate trench that exposes the first fin structure, removing the second gate stack to form a second gate trench that exposes the second fin feature, performing a high-pressure-anneal process to a portion of the first fin feature and forming a first high-k/metal gate (HK/MG) within the first gate trench over the portion of the first fin feature and a second HK/MG within the second gate trench over the second fin feature. Therefore the first HK/MG is formed with a first threshold voltage and the second HK/MG is formed with a second threshold voltage, which is different than the first threshold voltage.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: August 8, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Yi Peng, Chia-Cheng Ho, Chih Chieh Yeh, Tsung-Lin Lee, Yu-Lin Yang
  • Patent number: 9659826
    Abstract: A method for fabricating a semiconductor device includes forming a relaxed semiconductor layer on a substrate, the substrate comprising an n-type region and a p-type region. The method further includes forming a tensile strained semiconductor layer on the relaxed semiconductor layer, etching a portion of the tensile strained semiconductor layer in the p-type region, forming a compressive strained semiconductor layer on the tensile strained semiconductor layer in the p-type region, forming a first gate in the n-type region and a second gate in the p-type region, and forming a first set of source/drain features adjacent to the first gate and a second set of source/drain features adjacent to the second gate. The second set of source/drain features are deeper than the first set of source/drain features.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: May 23, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Yi Peng, Yu-Lin Yang, Chia-Cheng Ho, Jung-Piao Chiu, Tsung-Lin Lee, Chih Chieh Yeh, Chih-Sheng Chang, Yee-Chia Yeo
  • Publication number: 20170104061
    Abstract: Transistor structures and methods of forming transistor structures are provided. The transistor structures include alternating layers of a first epitaxial material and a second epitaxial material. In some embodiments, one of the first epitaxial material and the second epitaxial material may be removed for one of an n-type or p-type transistor. A bottommost layer of the first epitaxial material and the second epitaxial material maybe be removed, and sidewalls of one of the first epitaxial material and the second epitaxial material may be indented or recessed.
    Type: Application
    Filed: November 6, 2015
    Publication date: April 13, 2017
    Inventors: Cheng-Yi Peng, Hung-Li Chiang, Yu-Lin Yang, Chih Chieh Yeh, Yee-Chia Yeo, Chi-Wen Liu
  • Publication number: 20170084498
    Abstract: A method for fabricating a semiconductor device includes forming a relaxed semiconductor layer on a substrate, the substrate comprising an n-type region and a p-type region. The method further includes forming a tensile strained semiconductor layer on the relaxed semiconductor layer, etching a portion of the tensile strained semiconductor layer in the p-type region, forming a compressive strained semiconductor layer on the tensile strained semiconductor layer in the p-type region, forming a first gate in the n-type region and a second gate in the p-type region, and forming a first set of source/drain features adjacent to the first gate and a second set of source/drain features adjacent to the second gate. The second set of source/drain features are deeper than the first set of source/drain features.
    Type: Application
    Filed: December 5, 2016
    Publication date: March 23, 2017
    Inventors: Cheng-Yi Peng, Yu-Lin Yang, Chia-Cheng Ho, Jung-Piao Chiu, Tsung-Lin Lee, Chih Chieh Chang, Yee-Chia Yeo
  • Patent number: 9515071
    Abstract: A semiconductor device includes a substrate having a first region and a second region, an n-type transistor in the first region, the n-type transistor comprising a first set of source/drain features, and a p-type transistor in the second region, the p-type transistor comprising a second set of source/drain features. The second set of source/drain features extend deeper than the first set of source/drain features.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: December 6, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Yi Peng, Yu-Lin Yang, Chia-Cheng Ho, Jung-Piao Chiu, Tsung-Lin Lee, Chih Chieh Yeh, Chih-Sheng Chang, Yee-Chia Yeo
  • Publication number: 20160336319
    Abstract: A method for manufacturing a semiconductor device includes forming a fin structure over a substrate and forming a first gate structure over a first portion of the fin structure. A first nitride layer is formed over a second portion of the fin structure. The first nitride layer is exposed to ultraviolet radiation. Source/drain regions are formed at the second portion of the fin structure.
    Type: Application
    Filed: May 15, 2015
    Publication date: November 17, 2016
    Inventors: Yu-Lin YANG, Chia-Cheng HO, Chih Chieh YEH, Cheng-Yi PENG, Tsung-Lin LEE
  • Patent number: 9461041
    Abstract: A device including a substrate having a fin. A metal gate structure is formed on the fin. The metal gate structure includes a stress metal layer formed on the fin such that the stress metal layer extends to a first height from an STI feature, the first height being greater than the fin height. A conduction metal layer is formed on the stress metal layer.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: October 4, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Lin Yang, Tsu-Hsiu Perng, Chih Chieh Yeh, Li-Shyue Lai
  • Publication number: 20160190136
    Abstract: A semiconductor device includes a substrate having a first region and a second region, an n-type transistor in the first region, the n-type transistor comprising a first set of source/drain features, and a p-type transistor in the second region, the p-type transistor comprising a second set of source/drain features. The second set of source/drain features extend deeper than the first set of source/drain features.
    Type: Application
    Filed: December 24, 2014
    Publication date: June 30, 2016
    Inventors: Cheng-Yi Peng, Yu-Lin Yang, Chia-Cheng Ho, Jung-Piao Chiu, Tsung-Lin Lee, Chih Chieh Yeh, Chih-Sheng Chang, Yee-Chia Yeo
  • Publication number: 20160181244
    Abstract: A method of fabricating a semiconductor device includes forming a plurality of isolation features on a semiconductor substrate, thereby defining a first set of semiconductor features, performing an etching process on the first set of semiconductor features such that larger semiconductor features are etched deeper than smaller semiconductor features, after the etching process, forming anti-punch-through features on surfaces of the exposed features of the first set of semiconductor features, forming a semiconductor layer over the anti-punch-through features, and forming transistors on the semiconductor layer of each of the features of the first set of semiconductor features
    Type: Application
    Filed: December 23, 2014
    Publication date: June 23, 2016
    Inventors: Cheng-Yi Peng, Yu-Lin Yang, Chia-Cheng Ho, Hung-Li Chiang, Wei-Jen Lai, Tzu-Chiang Chen, Tsung-Lin Lee, Chih Chieh Yeh, Chih-Sheng Chang, Yee-Chia Yeo
  • Publication number: 20160181245
    Abstract: A semiconductor device includes a semiconductor substrate having a first region and a second region. The first region includes a first set of fin structures, the first set of fin structures comprising a first set of epitaxial anti-punch-through features of a first conductivity type. The first region further includes a first set of transistors formed over the first set of fin structures. The second region includes a second set of fin structures, the second set of fin structures comprising a second set of epitaxial anti-punch-through features of a second conductivity type opposite to the first conductivity type. The second region further includes a second set of transistors formed over the second set of fin structures. The first set of epitaxial anti-punch-through features and the second set of epitaxial anti-punch-through features are substantially co-planar.
    Type: Application
    Filed: September 17, 2015
    Publication date: June 23, 2016
    Inventors: Cheng-Yi Peng, Chia-Cheng Ho, Chih-Sheng Chang, Yee-Chia Yeo, Yu-Lin Yang
  • Publication number: 20160172248
    Abstract: A method for fabricating a semiconductor device includes forming a first gate stack over a first fin feature and second gate stack over a second fin feature, removing the first gate stack to form a first gate trench that exposes the first fin structure, removing the second gate stack to form a second gate trench that exposes the second fin feature, performing a high-pressure-anneal process to a portion of the first fin feature and forming a first high-k/metal gate (HK/MG) within the first gate trench over the portion of the first fin feature and a second HK/MG within the second gate trench over the second fin feature. Therefore the first HK/MG is formed with a first threshold voltage and the second HK/MG is formed with a second threshold voltage, which is different than the first threshold voltage.
    Type: Application
    Filed: August 28, 2015
    Publication date: June 16, 2016
    Inventors: Cheng-Yi Peng, Chia-Cheng Ho, Chih Chieh Yeh, Tsung-Lin Lee, Yu-Lin Yang
  • Publication number: 20160005674
    Abstract: An integrated circuit packaging structure includes a chip, an electrical bump, a heat dissipation bump, a lead frame, and a sealant. The chip includes an active surface and an electronic component that is formed by using a semiconductor process. The electrical bump is electrically connected to the electronic component through the active surface. The heat dissipation bump is connected to the active surface. The lead frame is electrically connected to the electrical bump. The sealant covers the chip, the lead frame, and the electrical bump, wherein the heat dissipation bump and a part of the lead frame are exposed without being covered. The height of the heat dissipation bump relative to the active surface is unequal to that of the electrical bump relative to the active surface.
    Type: Application
    Filed: October 22, 2014
    Publication date: January 7, 2016
    Inventors: Ya Tzu WU, Yu Lin Yang
  • Publication number: 20150115372
    Abstract: A device including a substrate having a fin. A metal gate structure is formed on the fin. The metal gate structure includes a stress metal layer formed on the fin such that the stress metal layer extends to a first height from an STI feature, the first height being greater than the fin height. A conduction metal layer is formed on the stress metal layer.
    Type: Application
    Filed: December 29, 2014
    Publication date: April 30, 2015
    Inventors: Yu-Lin Yang, Tsu-Hsiu Perng, Chih Chieh Yeh, Li-Shyue Lai
  • Patent number: 8921218
    Abstract: A method and device including a substrate having a fin. A metal gate structure is formed on the fin. The metal gate structure includes a stress metal layer formed on the fin such that the stress metal layer extends to a first height from an STI feature, the first height being greater than the fin height. A conduction metal layer is formed on the stress metal layer.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: December 30, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Lin Yang, Tsu-Hsiu Perng, Chih Chieh Yeh, Li-Shyue Lai
  • Patent number: 8659128
    Abstract: A flip chip package structure includes a chip placed under a lead frame, a bump on the upper surface of the chip that is electrically connected to the lead of the lead frame, and a backside metal on the lower surface of the chip that is exposed outside an encapsulant encapsulating the chip and a portion of the lead frame.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: February 25, 2014
    Assignee: Richtek Technology Corp.
    Inventors: Yu-Lin Yang, Lih-Ming Doong