Patents by Inventor Yu-Lung Yeh

Yu-Lung Yeh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220199459
    Abstract: An LDMOS device comprises a well region, first and second implant regions, a gate electrode, first and second source/drain regions, a first STI region, and a first DTI region. The well region is in a substrate and of a first conductivity type. The first implant region is in the substrate and of a second conductivity type. The second implant region is in the well region and of the first conductivity type. The gate electrode extends from above the well region to above the first implant region. The first and second source/drain regions are respectively in the first and second implant regions. The first STI region laterally extends from the second implant region to directly below the gate electrode. The first DTI region extends downwards from a bottom surface of the first STI region into the well region. The first DTI region vertically overlaps with the gate electrode.
    Type: Application
    Filed: March 14, 2022
    Publication date: June 23, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Chieh FANG, Chien-Chang HUANG, Chi-Yuan WEN, Jian WU, Ming-Chi WU, Jung-Yu CHENG, Shih-Shiung CHEN, Wei-Tung HUANG, Yu-Lung YEH
  • Patent number: 11342372
    Abstract: An image sensor device is provided. The image sensor device includes a semiconductor substrate having a first side, a second side opposite to the first side, and at least one light-sensing region close to the first side. The image sensor device includes a dielectric feature covering the second side and extending into the semiconductor substrate. The dielectric feature in the semiconductor substrate surrounds the light-sensing region. The image sensor device includes a reflective layer in the dielectric feature in the semiconductor substrate, wherein a top portion of the reflective layer protrudes away from the second side, and a top surface of the reflective layer and a top surface of the insulating layer are substantially coplanar.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: May 24, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Chieh Fang, Ming-Chi Wu, Ji-Heng Jiang, Chi-Yuan Wen, Chien-Nan Tu, Yu-Lung Yeh, Shih-Shiung Chen, Kun-Yu Lin
  • Publication number: 20220139769
    Abstract: Various embodiments of the present application are directed to a method for forming a semiconductor-on-insulator (SOI) device with an impurity competing layer to absorb potential contamination metal particles during an annealing process, and the SOI structure thereof. In some embodiments, an impurity competing layer is formed on the dummy substrate. An insulation layer is formed over a support substrate. A front side of the dummy wafer is bonded to the insulation layer. An annealing process is performed and the impurity competing layer absorbs metal from an upper portion of the dummy substrate. Then, a majority portion of the dummy substrate is removed including the impurity competing layer, leaving a device layer of the dummy substrate on the insulation layer.
    Type: Application
    Filed: January 19, 2022
    Publication date: May 5, 2022
    Inventors: Yu-Hung Cheng, Pu-Fang Chen, Cheng-Ta Wu, Po-Jung Chiang, Ru-Liang Lee, Victor Y. Lu, Yen-Hsiu Chen, Yeur-Luen Tu, Yu-Lung Yeh, Shi-Chieh Lin
  • Patent number: 11302734
    Abstract: A method includes etching a semiconductor substrate to form a trench, filling a dielectric layer into the trench, with a void being formed in the trench and between opposite portions of the dielectric layer, etching the dielectric layer to reveal the void, forming a diffusion barrier layer on the dielectric layer, and forming a high-reflectivity metal layer on the diffusion barrier layer. The high-reflectivity metal layer has a portion extending into the trench. A remaining portion of the void is enclosed by the high-reflectivity metal layer.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: April 12, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Chi Wu, Chun-Chieh Fang, Bo-Chang Su, Chien Nan Tu, Yu-Lung Yeh, Kun-Yu Lin, Shih-Shiung Chen
  • Publication number: 20220077214
    Abstract: A semiconductor device includes a device layer, a semiconductor layer, a sensor element, a dielectric layer, a color filter layer, and a micro-lens. The semiconductor layer is over the device layer. The semiconductor layer has a plurality of microstructures thereon. Each of the microstructures has a substantially triangular cross-section. The sensor element is under the microstructures of the semiconductor layer and is configured to sense incident light. The dielectric layer is over the microstructures of the semiconductor layer. The color filter layer is over the dielectric layer. The micro-lens is over the color filter layer.
    Type: Application
    Filed: November 14, 2021
    Publication date: March 10, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chien-Nan TU, Yu-Lung YEH, Hsing-Chih LIN, Chien-Chang HUANG, Shih-Shiung CHEN
  • Patent number: 11232974
    Abstract: Various embodiments of the present application are directed to a method for forming a semiconductor-on-insulator (SOI) device with an impurity competing layer to absorb potential contamination metal particles during an annealing process, and the SOI structure thereof. In some embodiments, an impurity competing layer is formed on the dummy substrate. An insulation layer is formed over a support substrate. A front side of the dummy wafer is bonded to the insulation layer. An annealing process is performed and the impurity competing layer absorbs metal from an upper portion of the dummy substrate. Then, a majority portion of the dummy substrate is removed including the impurity competing layer, leaving a device layer of the dummy substrate on the insulation layer.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: January 25, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Hung Cheng, Pu-Fang Chen, Cheng-Ta Wu, Po-Jung Chiang, Ru-Liang Lee, Victor Y. Lu, Yen-Hsiu Chen, Yeur-Luen Tu, Yu-Lung Yeh, Shi-Chieh Lin
  • Publication number: 20210388523
    Abstract: A plating membrane includes a support structure extending radially outward from a nozzle that is to direct a flow of a plating solution toward a wafer. The plating membrane also includes a frame, supported by the support structure, having an inner wall that is angled outward from the nozzle. The outward angle of the inner wall relative to the nozzle directs a flow of plating solution from the nozzle in a manner that increases uniformity of the flow of the plating solution toward the wafer, reduces the amount of plating solution that is redirected inward toward the center of the plating membrane, reduces plating material voids in trenches of the wafer (e.g., high aspect ratio trenches), and/or the like.
    Type: Application
    Filed: June 15, 2020
    Publication date: December 16, 2021
    Inventors: Yung-Hsiang Chen, Hung-San Lu, Ting-Ying Wu, Chuang Chihchous, Yu-Lung Yeh
  • Publication number: 20210366954
    Abstract: A semiconductor device is provided. The semiconductor device includes a first deep trench isolation (DTI) structure within a substrate. The first DTI structure includes a barrier structure, a dielectric structure, and a copper structure. The dielectric structure is between the barrier structure and the copper structure. The barrier structure is between the substrate and the dielectric structure.
    Type: Application
    Filed: March 4, 2021
    Publication date: November 25, 2021
    Inventors: Yung-Hsiang CHEN, Yu-Lung YEH, Yen-Hsiu CHEN, Bo-Chang SU, Cheng-Hsien CHEN
  • Patent number: 11177302
    Abstract: A semiconductor device includes a device layer, a semiconductor layer, a sensor element, a dielectric layer, a color filter layer, and a micro-lens. The semiconductor layer is over the device layer. The semiconductor layer has a plurality of microstructures thereon. Each of the microstructures has a substantially triangular cross-section. The sensor element is under the microstructures of the semiconductor layer and is configured to sense incident light. The dielectric layer is over the microstructures of the semiconductor layer. The color filter layer is over the dielectric layer. The micro-lens is over the color filter layer.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: November 16, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chien-Nan Tu, Yu-Lung Yeh, Hsing-Chih Lin, Chien-Chang Huang, Shih-Shiung Chen
  • Publication number: 20210351067
    Abstract: A semiconductor arrangement includes an isolation structure having a first electrical insulator layer in a trench in a semiconductor substrate and a second electrical insulator layer in the trench and over the first electrical insulator layer.
    Type: Application
    Filed: May 5, 2020
    Publication date: November 11, 2021
    Inventors: Wei-Liang CHEN, Cheng-Hsien CHEN, Yu-Lung YEH, Chuang CHIHCHOUS, Yen-Hsiu CHEN
  • Publication number: 20210273038
    Abstract: A semiconductor processing system is provided to form a capacitor dielectric layer in a metal-insulator-metal capacitor. The semiconductor processing system includes a precursor tank configured to generate a precursor gas from a metal organic solid precursor, a processing chamber configured to perform a plasma enhanced chemical vapor deposition, and at least one buffer tank between the precursor tank and the processing chamber. The at least one buffer tank is coupled to the precursor tank via a first pipe and coupled to the processing chamber via a second pipe.
    Type: Application
    Filed: March 2, 2020
    Publication date: September 2, 2021
    Inventors: Wei-Liang Chen, Yu-Lung Yeh, Chihchous Chuang, Yen-Hsiu Chen, Tsai-Ji Liou, Yung-Hsiang Chen, Ching-Hung Huang
  • Publication number: 20210119064
    Abstract: The present disclosure relates to an integrated chip that has a light sensing element arranged within a substrate. An absorption enhancement structure is arranged along a back-side of the substrate, and an interconnect structure is arranged along a front-side of the substrate. A reflection structure includes a dielectric structure and a plurality of semiconductor pillars that matingly engage the dielectric structure. The dielectric structure and semiconductor pillars are arranged along the front-side of the substrate and are spaced between the light sensing element and the interconnect structure. The plurality of semiconductor pillars and the dielectric structure are collectively configured to reflect incident light that has passed through the absorption enhancement structure and through the light sensing element back towards the light sensing element before the incident light strikes the interconnect structure.
    Type: Application
    Filed: December 28, 2020
    Publication date: April 22, 2021
    Inventors: Po-Han Huang, Chien Nan Tu, Chi-Yuan Wen, Ming-Chi Wu, Yu-Lung Yeh, Hsin-Yi Kuo
  • Publication number: 20210091125
    Abstract: An image sensor with high quantum efficiency is provided. In some embodiments, a semiconductor substrate includes a non-porous semiconductor layer along a front side of the semiconductor substrate. A periodic structure is along a back side of the semiconductor substrate. A high absorption layer lines the periodic structure on the back side of the semiconductor substrate. The high absorption layer is a semiconductor material with an energy bandgap less than that of the non-porous semiconductor layer. A photodetector is in the semiconductor substrate and the high absorption layer. A method for manufacturing the image sensor is also provided.
    Type: Application
    Filed: November 30, 2020
    Publication date: March 25, 2021
    Inventors: Chien-Chang Huang, Chien Nan Tu, Ming-Chi Wu, Yu-Lung Yeh, Ji Heng Jiang
  • Patent number: 10879406
    Abstract: The present disclosure relates to an integrated chip that has a light sensing element arranged within a substrate. An absorption enhancement structure is arranged along a back-side of the substrate, and an interconnect structure is arranged along a front-side of the substrate. A reflection structure includes a dielectric structure and a plurality of semiconductor pillars that matingly engage the dielectric structure. The dielectric structure and semiconductor pillars are arranged along the front-side of the substrate and are spaced between the light sensing element and the interconnect structure. The plurality of semiconductor pillars and the dielectric structure are collectively configured to reflect incident light that has passed through the absorption enhancement structure and through the light sensing element back towards the light sensing element before the incident light strikes the interconnect structure.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: December 29, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Po-Han Huang, Chien Nan Tu, Chi-Yuan Wen, Ming-Chi Wu, Yu-Lung Yeh, Hsin-Yi Kuo
  • Patent number: 10868053
    Abstract: An image sensor with high quantum efficiency is provided. In some embodiments, a semiconductor substrate includes a non-porous semiconductor layer along a front side of the semiconductor substrate. A periodic structure is along a back side of the semiconductor substrate. A high absorption layer lines the periodic structure on the back side of the semiconductor substrate. The high absorption layer is a semiconductor material with an energy bandgap less than that of the non-porous semiconductor layer. A photodetector is in the semiconductor substrate and the high absorption layer. A method for manufacturing the image sensor is also provided.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chien-Chang Huang, Chien Nan Tu, Ming-Chi Wu, Yu-Lung Yeh, Ji Heng Jiang
  • Publication number: 20200343289
    Abstract: An image sensor device is provided. The image sensor device includes a semiconductor substrate having a first side, a second side opposite to the first side, and at least one light-sensing region close to the first side. The image sensor device includes a dielectric feature covering the second side and extending into the semiconductor substrate. The dielectric feature in the semiconductor substrate surrounds the light-sensing region. The image sensor device includes a reflective layer in the dielectric feature in the semiconductor substrate, wherein a top portion of the reflective layer protrudes away from the second side, and a top surface of the reflective layer and a top surface of the insulating layer are substantially coplanar.
    Type: Application
    Filed: July 9, 2020
    Publication date: October 29, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Chieh FANG, Ming-Chi WU, Ji-Heng JIANG, Chi-Yuan WEN, Chien-Nan TU, Yu-Lung YEH, Shih-Shiung CHEN, Kun-Yu LIN
  • Patent number: 10784150
    Abstract: A semiconductor structure includes a semiconductive substrate including a first surface and a second surface opposite to the first surface, a shallow trench isolation (STI) including a first portion at least partially disposed within the semiconductive substrate and tapered from the first surface towards the second surface, and a second portion disposed inside the semiconductive substrate, coupled with the first portion and extended from the first portion towards the second surface, and a void enclosed by the STI, wherein the void is at least partially disposed within the second portion of the STI.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: September 22, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Ching-Chung Su, Jiech-Fun Lu, Jian Wu, Che-Hsiang Hsueh, Ming-Chi Wu, Chi-Yuan Wen, Chun-Chieh Fang, Yu-Lung Yeh
  • Patent number: 10734427
    Abstract: A method for forming an image sensor device is provided. The method includes providing a semiconductor substrate including a front surface, a back surface opposite to the front surface, at least one light-sensing region close to the front surface, and a first trench surrounding the light-sensing region. The method includes forming an insulating layer over the back surface and in the first trench. A void is formed in the insulating layer in the first trench, and the void is closed. The method includes removing the insulating layer over the void to open up the void. The opened void forms a second trench partially in the first trench. The method includes filling a reflective structure in the second trench. The reflective structure has a light reflectivity ranging from about 70% to about 100%.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: August 4, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Chieh Fang, Ming-Chi Wu, Ji-Heng Jiang, Chi-Yuan Wen, Chien-Nan Tu, Yu-Lung Yeh, Shih-Shiung Chen, Kun-Yu Lin
  • Patent number: 10707361
    Abstract: The present disclosure relates to an integrated chip that has a light sensing element arranged within a substrate. An absorption enhancement structure is arranged along a back-side of the substrate, and an interconnect structure is arranged along a front-side of the substrate. A reflection structure includes a dielectric structure and a plurality of semiconductor pillars that matingly engage the dielectric structure. The dielectric structure and semiconductor pillars are arranged along the front-side of the substrate and are spaced between the light sensing element and the interconnect structure. The plurality of semiconductor pillars and the dielectric structure are collectively configured to reflect incident light that has passed through the absorption enhancement structure and through the light sensing element back towards the light sensing element before the incident light strikes the interconnect structure.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: July 7, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Po-Han Huang, Chien Nan Tu, Chi-Yuan Wen, Ming-Chi Wu, Yu-Lung Yeh, Hsin-Yi Kuo
  • Publication number: 20200176306
    Abstract: Various embodiments of the present application are directed to a method for forming a semiconductor-on-insulator (SOI) device with an impurity competing layer to absorb potential contamination metal particles during an annealing process, and the SOI structure thereof. In some embodiments, an impurity competing layer is formed on the dummy substrate. An insulation layer is formed over a support substrate. A front side of the dummy wafer is bonded to the insulation layer. An annealing process is performed and the impurity competing layer absorbs metal from an upper portion of the dummy substrate. Then, a majority portion of the dummy substrate is removed including the impurity competing layer, leaving a device layer of the dummy substrate on the insulation layer.
    Type: Application
    Filed: August 21, 2019
    Publication date: June 4, 2020
    Inventors: Yu-Hung Cheng, Pu-Fang Chen, Cheng-Ta Wu, Po-Jung Chiang, Ru-Liang Lee, Victor Y. Lu, Yen-Hsiu Chen, Yeur-Luen Tu, Yu-Lung Yeh, Shi-Chieh Lin