Patents by Inventor Yu-Po Wang

Yu-Po Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050194666
    Abstract: A semiconductor package and a fabrication method thereof are provided in which a dielectric material layer formed with a plurality of openings is used and a solder material is applied into each of the openings. A first copper layer and a second copper layer are in turn deposited over the dielectric material layer and solder materials, and the first and second copper layers are patterned to form a plurality of conductive traces each of which has a terminal coated with a metal layer. A chip is mounted on the conductive traces and electrically connected to the terminals by bonding wires, with the dielectric material layer and solder materials being exposed to the outside. This package structure can flexibly arrange the conductive traces and effectively shorten the bonding wires, thereby improve trace routability and quality of electrical connection for the semiconductor package.
    Type: Application
    Filed: April 21, 2005
    Publication date: September 8, 2005
    Inventors: Chien Huang, Yu-Po Wang, Chih-Ming Huang
  • Publication number: 20050194667
    Abstract: A semiconductor package and a fabrication method thereof are provided in which a dielectric material layer formed with a plurality of openings is used and a solder material is applied into each of the openings. A first copper layer and a second copper layer are in turn deposited over the dielectric material layer and solder materials, and the first and second copper layers are patterned to form a plurality of conductive traces each of which has a terminal coated with a metal layer. A chip is mounted on the conductive traces and electrically connected to the terminals by bonding wires, with the dielectric material layer and solder materials being exposed to the outside. This package structure can flexibly arrange the conductive traces and effectively shorten the bonding wires, thereby improve trace routability and quality of electrical connection for the semiconductor package.
    Type: Application
    Filed: April 21, 2005
    Publication date: September 8, 2005
    Inventors: Chien Huang, Yu-Po Wang, Chih-Ming Huang
  • Publication number: 20050189659
    Abstract: A semiconductor package and a fabrication method thereof are provided in which a dielectric material layer formed with a plurality of openings is used and a solder material is applied into each of the openings. A first copper layer and a second copper layer are in turn deposited over the dielectric material layer and solder materials, and the first and second copper layers are patterned to form a plurality of conductive traces each of which has a terminal coated with a metal layer. A chip is mounted on the conductive traces and electrically connected to the terminals by bonding wires, with the dielectric material layer and solder materials being exposed to the outside. This package structure can flexibly arrange the conductive traces and effectively shorten the bonding wires, thereby improve trace routability and quality of electrical connection for the semiconductor package.
    Type: Application
    Filed: April 21, 2005
    Publication date: September 1, 2005
    Inventors: Chien Huang, Yu-Po Wang, Chih-Ming Huang
  • Publication number: 20050184368
    Abstract: A semiconductor package and a fabrication method thereof are provided in which a dielectric material layer formed with a plurality of openings is used and a solder material is applied into each of the openings. A first copper layer and a second copper layer are in turn deposited over the dielectric material layer and solder materials, and the first and second copper layers are patterned to form a plurality of conductive traces each of which has a terminal coated with a metal layer. A chip is mounted on the conductive traces and electrically connected to the terminals by bonding wires, with the dielectric material layer and solder materials being exposed to the outside. This package structure can flexibly arrange the conductive traces and effectively shorten the bonding wires, thereby improve trace routability and quality of electrical connection for the semiconductor package.
    Type: Application
    Filed: April 21, 2005
    Publication date: August 25, 2005
    Inventors: Chien Huang, Yu-Po Wang, Chih-Ming Huang
  • Patent number: 6884652
    Abstract: A semiconductor package and a fabrication method thereof are provided in which a dielectric material layer formed with a plurality of openings is used and a solder material is applied into each of the openings. A first copper layer and a second copper layer are in turn deposited over the dielectric material layer and solder materials, and the first and second copper layers are patterned to form a plurality of conductive traces each of which has a terminal coated with a metal layer. A chip is mounted on the conductive traces and electrically connected to the terminals by bonding wires, with the dielectric material layer and solder materials being exposed to the outside. This package structure can flexibly arrange the conductive traces and effectively shorten the bonding wires, thereby improve trace routability and quality of electrical connection for the semiconductor package.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: April 26, 2005
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chien Ping Huang, Yu-Po Wang, Chih-Ming Huang
  • Patent number: 6819565
    Abstract: A cavity-down ball grid array (CDBGA) semiconductor package with a heat spreader is provided, in which a substrate is formed with at least a ground ring, a plurality of ground vias, a ground layer, and at least an opening for receiving at least a chip. The substrate is mounted in a cavity of the heat spreader, and an electrically conductive adhesive is disposed between an inner wall of the cavity and edges of the substrate, so as to allow the ground layer and the ground ring exposed to the edges of the substrate to be electrically connected to the heat spreader by means of the electrically conductive adhesive. By the above arrangement with the heat spreader being included in a grounding circuit path of the chip, ground floatation and excess ground inductance and resistance can be prevented for the semiconductor package, thereby solving heat-dissipation, electromagnetic interference and crosstalk problems.
    Type: Grant
    Filed: January 14, 2003
    Date of Patent: November 16, 2004
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Nai-Hao Kao, Yu-Po Wang, Wen-Jung Chiang
  • Publication number: 20040142505
    Abstract: A semiconductor package and a fabrication method thereof are provided in which a dielectric material layer formed with a plurality of openings is used and a solder material is applied into each of the openings. A first copper layer and a second copper layer are in turn deposited over the dielectric material layer and solder materials, and the first and second copper layers are patterned to form a plurality of conductive traces each of which has a terminal coated with a metal layer. A chip is mounted on the conductive traces and electrically connected to the terminals by bonding wires, with the dielectric material layer and solder materials being exposed to the outside. This package structure can flexibly arrange the conductive traces and effectively shorten the bonding wires, thereby improve trace routability and quality of electrical connection for the semiconductor package.
    Type: Application
    Filed: April 22, 2003
    Publication date: July 22, 2004
    Applicant: Siliconware Precision Industries Co., Ltd.
    Inventors: Chien Ping Huang, Yu-Po Wang, Chih-Ming Huang
  • Patent number: 6750533
    Abstract: A chip carrier with a dam bar structure is proposed. The chip carrier is defined with at least a chip attach area and a wire bonding area surrounding the chip attach area, allowing a chip to be mounted on the chip attach area and electrically connected to the wire bonding area by bonding wires bonded to the wire bonding area. A molding gate and a dam bar are formed on the substrate outside the chip attach area and wire bonding area. An molding compound is injected through the molding gate for encapsulating the chip and bonding wires. The dam bar is provided with a first gate directed toward the molding gate, a second gate and a third gate opposed to the second gate, wherein the second and third gates are each vertically arranged with respect to the molding gate, allowing the molding compound to divert its flow direction by the dam bar.
    Type: Grant
    Filed: June 19, 2002
    Date of Patent: June 15, 2004
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Yu-Po Wang, Chung-Chi Lin, Chien-Ping Huang
  • Publication number: 20040070948
    Abstract: A cavity-down ball grid array (CDBGA) semiconductor package with a heat spreader is provided, in which a substrate is formed with at least a ground ring, a plurality of ground vias, a ground layer, and at least an opening for receiving at least a chip. The substrate is mounted in a cavity of the heat spreader, and an electrically conductive adhesive is disposed between an inner wall of the cavity and edges of the substrate, so as to allow the ground layer and the ground ring exposed to the edges of the substrate to be electrically connected to the heat spreader by means of the electrically conductive adhesive. By the above arrangement with the heat spreader being included in a grounding circuit path of the chip, ground floatation and excess ground inductance and resistance can be prevented for the semiconductor package, thereby solving heat-dissipation, electromagnetic interference and crosstalk problems.
    Type: Application
    Filed: January 14, 2003
    Publication date: April 15, 2004
    Applicant: Siliconware Precision Industries, Ltd. Taiwan
    Inventors: Nai-Hao Kao, Yu-Po Wang, Wen-Jung Chiang
  • Publication number: 20030193082
    Abstract: A chip carrier with a dam bar structure is proposed. The chip carrier is defined with at least a chip attach area and a wire bonding area surrounding the chip attach area, allowing a chip to be mounted on the chip attach area and electrically connected to the wire bonding area by bonding wires bonded to the wire bonding area. A molding gate and a dam bar are formed on the substrate outside the chip attach area and wire bonding area. An molding compound is injected through the molding gate for encapsulating the chip and bonding wires. The dam bar is provided with a first gate directed toward the molding gate, a second gate and a third gate opposed to the second gate, wherein the second and third gates are each vertically arranged with respect to the molding gate, allowing the molding compound to divert its flow direction by the dam bar.
    Type: Application
    Filed: June 19, 2002
    Publication date: October 16, 2003
    Applicant: Siliconware Precision Industries Co., Ltd.
    Inventors: Yu-Po Wang, Chung-Chi Lin, Chien-Ping Huang
  • Patent number: 6610560
    Abstract: A semiconductor packaging technology is proposed for the fabrication of a chip-on-chip (COC) based multi-chip module (MCM) with molded underfill. The proposed semiconductor packaging technology is characterized by the provision of a side gap of an empirically-predetermined width between the overlying chips mounted through COC technology over an underlying chip to serve as an air vent during molding process. This allows the injected molding material to flow freely into the flip-chip undergaps during molding process. In actual application, the exact width of the side gap is empirically predetermined through molded-underfill simulation experiments to find the optimal value. Based on experimental data, it is found that this side gap width should be equal to or less than 0.3 mm to allow optimal underfill effect. The optimal value for this side gap width may be varied for different package specifications.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: August 26, 2003
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Han-Ping Pu, Yu-Po Wang, Caesar Lin
  • Publication number: 20020167079
    Abstract: A semiconductor packaging technology is proposed for the fabrication of a chip-on-chip (COC) based multi-chip module (MCM) with molded underfill. The proposed semiconductor packaging technology is characterized by the provision of a side gap of an empirically-predetermined width between the overlying chips mounted through COC technology over an underlying chip to serve as an air vent during molding process. This allows the injected molding material to flow freely into the flip-chip undergaps during molding process. In actual application, the exact width of the side gap is empirically predetermined through molded-underfill simulation experiments to find the optimal value. Based on experimental data, it is found that this side gap width should be equal to or less than 0.3 mm to allow optimal underfill effect. The optimal value for this side gap width may be varied for different package specifications.
    Type: Application
    Filed: May 11, 2001
    Publication date: November 14, 2002
    Inventors: Han-Ping Pu, Yu-Po Wang, Caesar Lin
  • Publication number: 20020079570
    Abstract: A semiconductor package with a heat dissipating element is proposed, in which the contact area between a semiconductor chip and the heat dissipating element is significantly reduced as the chip merely has its edge portion attached to the dissipating element. This makes an effect of a thermal stress on the chip reduced so as to prevent cracking and delamination for the chip. Moreover, the chip is partially exposed to the atmosphere, which allows the efficiency of heat dissipation and moisture escapement to be improved, so as to prevent a popcorn effect from occurrence and make the semiconductor package assured in reliability and quality.
    Type: Application
    Filed: August 7, 2001
    Publication date: June 27, 2002
    Applicant: Siliconware Precision Industries Co., Ltd,
    Inventors: Tzong-Da Ho, Chien-Ping Huang, Yu-Po Wang