Patents by Inventor Yu-Ti Su

Yu-Ti Su has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11526647
    Abstract: An integrated circuit includes a first type-one transistor, a second type-one transistor, a first type-two transistor, a second type-two transistor, a third type-one transistor, a fourth type-one transistor, and a fifth type-one transistor. The first type-one transistor has a gate configured to have a first supply voltage of a first power supply. The first type-two transistor has a gate configured to have a second supply voltage of the first power supply. The first active-region of the third type-one transistor is connected with an active-region of the first type-one transistor. The second active-region and the gate of the third type-one transistor are connected together. The first active-region of the fifth type-one transistor is connected with the gate of the third type-one transistor. The second active-region of the fifth type-one transistor is configured to have a first supply voltage of a second power supply.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: December 13, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chi-Yu Lu, Ting-Wei Chiang, Hui-Zhong Zhuang, Jerry Chang Jui Kao, Pin-Dai Sue, Jiun-Jia Huang, Yu-Ti Su, Wei-Hsiang Ma
  • Publication number: 20220359648
    Abstract: A circuit device includes core circuitry. The circuit device further includes a first plurality of guard rings having a first dopant type, wherein the first plurality of guard rings is around a periphery of the core circuitry. The circuit device further includes a second plurality of guard rings having a second dopant type, wherein the second dopant type is opposite to the first dopant type, and at least one guard ring of the second plurality of guard rings is around a periphery of at least one guard ring of the first plurality of guard rings.
    Type: Application
    Filed: July 26, 2022
    Publication date: November 10, 2022
    Inventors: Wan-Yen LIN, Wun-Jie LIN, Yu-Ti SU, Bo-Ting CHEN, Jen-Chou TSENG, Kuo-Ji CHEN, Sun-Jay CHANG, Min-Chang LIANG
  • Publication number: 20220352709
    Abstract: An ESD power clamp device includes an ESD detection circuit; a controlling circuit coupled with the ESD detection circuit; a field effect transistor (FET) coupled with the controlling circuit, and an impedance element coupled with the FET. The FET includes a drain terminal coupled with a first supply node; a gate terminal coupled with the controlling circuit; a source terminal coupled with a second supply node via the impedance element; and a bulk terminal coupled with second supply node.
    Type: Application
    Filed: July 29, 2021
    Publication date: November 3, 2022
    Inventors: Ken-Hao Fan, Yu-Ti Su, Tzu-Cheng Kao, Ming-Fu Tsai, Chia-Lin HSU
  • Publication number: 20220352159
    Abstract: The present disclosure describes a metal-oxide-semiconductor field-effect transistor (MOSFET) device. The MOSFET device includes a first-type substrate, a deep-second-type well in the first-type substrate, a first-type well over the deep-second-type well, and a second-type well over the deep-second-type well. The second-type well and the deep-second-type well form an enclosed space that includes the first-type well. The MOSFET also includes an embedded semiconductor region (ESR) in a vicinity of the enclosed space. The ESR includes a dopant concentration lower than at least one of a dopant concentration of the first-type well, a dopant concentration of the second-type well, and a dopant concentration of the deep-second-type well.
    Type: Application
    Filed: July 18, 2022
    Publication date: November 3, 2022
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chien Yao HUANG, Yu-Ti Su
  • Publication number: 20220344929
    Abstract: An electrostatic discharge (ESD) circuit includes an ESD detection circuit, a clamp circuit and an ESD assist circuit. The ESD detection circuit is coupled between a first and a second node. The first node has a first voltage. The second node has a second voltage. The clamp circuit includes a first transistor having a first gate, a first drain, a first source and a first body terminal. The first gate is coupled to at least the ESD detection circuit by a third node. The first drain is coupled to the second node. The first source and the first body terminal are coupled together at the first node. The ESD assist circuit is coupled between the first node and the third node, and is configured to clamp a third voltage of the third node at the first voltage during an ESD event at the first node or the second node.
    Type: Application
    Filed: October 26, 2021
    Publication date: October 27, 2022
    Inventors: Chia-Lin HSU, Ming-Fu TSAI, Yu-Ti SU, Kuo-Ji CHEN
  • Publication number: 20220310589
    Abstract: An IC device includes a first power terminal, an IO pad, a first ESD protection device coupled between the first power terminal and IO pad, a first trigger current source device coupled between the first power terminal and IO pad, and a semiconductor substrate over which the first ESD protection device and first trigger current source device are formed. The first ESD protection device includes a parasitic BJT having a collector and an emitter coupled between the IO pad and first power terminal, and a base coupled via a substrate resistance to a well tap coupled to the first power terminal. The first trigger current source device, in response to an ESD voltage on the IO pad, becomes conductive and causes discharge of the ESD voltage through the first ESD protection device to the first power terminal.
    Type: Application
    Filed: March 26, 2021
    Publication date: September 29, 2022
    Inventors: Po-Lin PENG, Yu-Ti SU
  • Publication number: 20220302105
    Abstract: An electrostatic discharge (ESD) protection circuit is coupled between first and second power supply buses. The ESD protection circuit includes a detection circuit; a pull-up circuit, coupled to the detection circuit, comprising at least a first n-type transistor; a pull-down circuit, coupled to the pull-up circuit, comprising at least a second n-type transistor; and a bypass circuit, coupled to the pull-up and pull-down circuits, wherein the detection circuit is configured to detect whether an ESD event is present on either the first or the second bus so as to cause the pull-up and pull-down circuits to selectively enable the bypass circuit for providing a discharging path between the first and second power supply buses.
    Type: Application
    Filed: June 9, 2022
    Publication date: September 22, 2022
    Inventors: Ming-Fu Tsai, Tzu-Heng Chang, Yu-Ti Su, Kai-Ping Huang
  • Patent number: 11450735
    Abstract: A method includes implanting a first guard ring around a periphery of core circuitry. The implanting of the first guard ring includes implanting a first component a first distance from the core circuitry on a first side of the core circuitry, and implanting a second component a second distance from the core circuitry on a second side of the core circuitry, wherein the second distance is greater than the first distance. The method further includes implanting a second guard ring around the periphery of the core circuitry. The implanting of the second guard ring includes implanting a third component a third distance from the core circuitry on the first side of the core circuitry, and implanting a fourth component a fourth distance from the core circuitry on the second side of the core circuitry, wherein the third distance is greater than the fourth distance.
    Type: Grant
    Filed: November 19, 2020
    Date of Patent: September 20, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wan-Yen Lin, Wun-Jie Lin, Yu-Ti Su, Bo-Ting Chen, Jen-Chou Tseng, Kuo-Ji Chen, Sun-Jay Chang, Min-Chang Liang
  • Publication number: 20220294212
    Abstract: A device is disclosed herein. The device includes a bias generator, an ESD driver, and a logic circuit. The bias generator includes a first transistor. The ESD driver includes a second transistor and a third transistor coupled to each other in series. The logic circuit is configured to generate a logic control signal. A first terminal of the first transistor is configured to receive a reference voltage signal, a control terminal of the first transistor is configured to receive a detection signal in response to an ESD event being detected, a second terminal of the first transistor is coupled to a control terminal of the third transistor, and a control terminal of the second transistor is configured to receive the logic control signal.
    Type: Application
    Filed: May 29, 2022
    Publication date: September 15, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Po-Lin PENG, Yu-Ti SU, Chia-Wei HSU, Ming-Fu TSAI, Shu-Yu SU, Li-Wei CHU, Jam-Wem LEE, Chia-Jung CHANG, Hsiang-Hui CHENG
  • Patent number: 11404409
    Abstract: An electrostatic discharge (ESD) protection circuit is coupled between first and second power supply buses. The ESD protection circuit includes a detection circuit; a pull-up circuit, coupled to the detection circuit, comprising at least a first n-type transistor; a pull-down circuit, coupled to the pull-up circuit, comprising at least a second n-type transistor; and a bypass circuit, coupled to the pull-up and pull-down circuits, wherein the detection circuit is configured to detect whether an ESD event is present on either the first or the second bus so as to cause the pull-up and pull-down circuits to selectively enable the bypass circuit for providing a discharging path between the first and second power supply buses.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: August 2, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Fu Tsai, Tzu-Heng Chang, Yu-Ti Su, Kai-Ping Huang
  • Patent number: 11393816
    Abstract: The present disclosure describes a metal-oxide-semiconductor field-effect transistor (MOSFET) device. The MOSFET device includes a first-type substrate, a deep-second-type well in the first-type substrate, a first-type well over the deep-second-type well, and a second-type well over the deep-second-type well. The second-type well and the deep-second-type well form an enclosed space that includes the first-type well. The MOSFET also includes an embedded semiconductor region (ESR) in a vicinity of the enclosed space. The ESR includes a dopant concentration lower than at least one of a dopant concentration of the first-type well, a dopant concentration of the second-type well, and a dopant concentration of the deep-second-type well.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: July 19, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chien Yao Huang, Yu-Ti Su
  • Publication number: 20220223582
    Abstract: An integrated circuit includes a diode string, a first transistor, a second transistor, and a third transistor. The diode string is coupled between a first reference voltage pin and an input/output (I/O) pad. A first terminal of the second transistor is coupled to a first node, and a gate terminal of the second transistor is coupled to a second reference voltage pin. In response to a voltage at the first terminal of the second transistor being higher than a voltage at the gate terminal of the second transistor, the second transistor is configured to turn on the third transistor, and the third transistor is configured to transmit a voltage received from the first reference voltage pin to a gate terminal of the first transistor.
    Type: Application
    Filed: March 28, 2022
    Publication date: July 14, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Po-Lin PENG, Yu-Ti SU
  • Patent number: 11380673
    Abstract: An Electro-Static Discharge (ESD) includes a first well having a first conductivity type on a substrate. The device further includes a second well within the first well. The second well has a second conductivity type. The device further includes a third well within the first well. The third well has the second conductivity type. The device further includes a first gate device disposed over the first well, a plurality of active regions between the first gate device and the dummy gate, and a dummy gate disposed within a space between the active regions. The dummy gate is positioned over a space between the second and third wells.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: July 5, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wun-Jie Lin, Han-Jen Yang, Yu-Ti Su
  • Publication number: 20220208752
    Abstract: A semiconductor device includes a first diode, a second diode, a clamp circuit and a third diode. The first diode is coupled between an input/output (I/O) pad and a first voltage terminal. The second diode is coupled with the first diode, the I/O pad and a second voltage terminal. The clamp circuit is coupled between the first voltage terminal and the second voltage terminal. The second diode and the clamp circuit are configured to direct a first part of an electrostatic discharge (ESD) current flowing between the I/O pad and the first voltage terminal. The third diode, coupled to the first voltage terminal, and the second diode include a first semiconductor structure configured to direct a second part of the ESD current flowing between the I/O pad and the first voltage terminal.
    Type: Application
    Filed: March 21, 2022
    Publication date: June 30, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Po-Lin PENG, Li-Wei CHU, Ming-Fu TSAI, Jam-Wem LEE, Yu-Ti SU
  • Publication number: 20220208753
    Abstract: In some embodiments, a semiconductor device is provided, including a first doped region of a first conductivity type configured as a first terminal of a first diode, a second doped region of a second conductivity type configured as a second terminal of the first diode, wherein the first and second doped regions are coupled to a first voltage terminal; a first well of the first conductivity type surrounding the first and second doped regions in a layout view; a third doped region of the first conductivity type configured as a first terminal, coupled to an input/output pad, of a second diode; and a second well of the second conductivity type surrounding the third doped region in the layout view. The second and third doped regions, the first well, and the second well are configured as a first electrostatic discharge path between the I/O pad and the first voltage terminal.
    Type: Application
    Filed: March 21, 2022
    Publication date: June 30, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Po-Lin PENG, Li-Wei CHU, Ming-Fu TSAI, Jam-Wem LEE, Yu-Ti SU
  • Patent number: 11355927
    Abstract: A device is disclosed herein. The device includes an electrostatic discharge (ESD) detector, a bias generator, and an ESD driver including at least two transistors coupled to each other in series. The ESD detector is configured to detect an input signal and generate a detection signal in response to an ESD event being detected. The bias generator is configured to generate a bias signal according to the detection signal. The at least two transistors are controlled according to the bias signal and a logic control signal, and the input signal is applied across the at least two transistors.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: June 7, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Po-Lin Peng, Yu-Ti Su, Chia-Wei Hsu, Ming-Fu Tsai, Shu-Yu Su, Li-Wei Chu, Jam-Wem Lee, Chia-Jung Chang, Hsiang-Hui Cheng
  • Patent number: 11289472
    Abstract: An integrated circuit includes an input/output (I/O) pad, an electrostatic discharge (ESD) primary circuit and a bias voltage generator. The electrostatic discharge primary circuit includes a first transistor. A first terminal of the first transistor is coupled to the I/O pad. The bias voltage generator is configured to provide a gate bias signal to the gate terminal of the first transistor. The bias voltage generator provides the gate bias signal at a first voltage level in response to that an ESD event occurs on the I/O pad. The bias voltage generator provides the gate bias signal at a second voltage level in response to that no ESD event occurs on the I/O pad. The first voltage level is lower than the second voltage level.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: March 29, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Po-Lin Peng, Yu-Ti Su
  • Patent number: 11282831
    Abstract: A semiconductor device includes a first diode, a second diode, a clamp circuit and a third diode. The first diode is coupled between an input/output (I/O) pad and a first voltage terminal. The second diode is coupled with the first diode, the I/O pad and a second voltage terminal. The clamp circuit is coupled between the first voltage terminal and the second voltage terminal. The second diode and the clamp circuit are configured to direct a first part of an electrostatic discharge (ESD) current flowing between the I/O pad and the first voltage terminal. The third diode, coupled to the first voltage terminal, and the second diode include a first semiconductor structure configured to direct a second part of the ESD current flowing between the I/O pad and the first voltage terminal.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: March 22, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Po-Lin Peng, Li-Wei Chu, Ming-Fu Tsai, Jam-Wem Lee, Yu-Ti Su
  • Publication number: 20220037310
    Abstract: An integrated circuit includes an input/output (I/O) pad, an electrostatic discharge (ESD) primary circuit and a bias voltage generator. The electrostatic discharge primary circuit includes a first transistor. A first terminal of the first transistor is coupled to the I/O pad. The bias voltage generator is configured to provide a gate bias signal to the gate terminal of the first transistor. The bias voltage generator provides the gate bias signal at a first voltage level in response to that an ESD event occurs on the I/O pad. The bias voltage generator provides the gate bias signal at a second voltage level in response to that no ESD event occurs on the I/O pad. The first voltage level is lower than the second voltage level.
    Type: Application
    Filed: July 30, 2020
    Publication date: February 3, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Po-Lin PENG, Yu-Ti SU
  • Publication number: 20220029414
    Abstract: A device is disclosed herein. The device includes an electrostatic discharge (ESD) detector, a bias generator, and an ESD driver including at least two transistors coupled to each other in series. The ESD detector is configured to detect an input signal and generate a detection signal in response to an ESD event being detected. The bias generator is configured to generate a bias signal according to the detection signal. The at least two transistors are controlled according to the bias signal and a logic control signal, and the input signal is applied across the at least two transistors.
    Type: Application
    Filed: July 22, 2020
    Publication date: January 27, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Po-Lin PENG, Yu-Ti SU, Chia-Wei HSU, Ming-Fu TSAI, Shu-Yu SU, Li-Wei CHU, Jam-Wem LEE, Chia-Jung CHANG, Hsiang-Hui CHENG