Patents by Inventor YUAN-HAO JIN

YUAN-HAO JIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10859501
    Abstract: A carrier for single molecule detection is related. The carrier includes a substrate; a middle layer, on the substrate; and a metal layer, on the middle layer; wherein the substrate is a flexible substrate, the middle layer includes a base and a patterned bulge on the base, the patterned bulge includes a plurality of strip-shaped bulges, the metal layer is on the patterned bulge.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: December 8, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Ying-Cheng Wang, Yuan-Hao Jin, Qun-Qing Li, Shou-Shan Fan
  • Patent number: 10852241
    Abstract: A method for detecting molecular is related. The method includes providing a sample, in which a sample surface is distributed with analyte molecules; providing a carrier including a substrate, a middle layer and a metal layer, in which the middle layer is sandwiched between the substrate and the metal layer, the middle layer includes a base and a patterned bulge on a surface of the base, the patterned bulge includes a plurality of strip-shaped bulges intersected with each other to form a net and define a number of holes, and the metal layer is on the patterned bulge; placing the carrier on the sample surface to make the metal layer being attached to the sample surface, in which parts of the analyte molecules are formed on the metal layer; detecting the analyte molecules on the metal layer with a detector.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: December 1, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Ying-Cheng Wang, Yuan-Hao Jin, Qun-Qing Li, Shou-Shan Fan
  • Patent number: 10790335
    Abstract: A method for making a metal oxide semiconductor carbon nanotube thin film transistor circuit. A p-type carbon nanotube thin film transistor and a n-type carbon nanotube thin film transistor are formed on an insulating substrate and stacked with each other. The p-type carbon nanotube thin film transistor includes a first semiconductor carbon nanotube layer, a first drain electrode, a first source electrode, a functional dielectric layer, and a first gate electrode. The n-type carbon nanotube thin film transistor includes a second semiconductor carbon nanotube layer, a second drain electrode, a second source electrode, a first insulating layer, and a second gate electrode. The first drain electrode and the second drain electrode are electrically connected with each other. The first gate electrode and the second gate electrode are electrically connected with each other.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: September 29, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yu-Dan Zhao, Qun-Qing Li, Xiao-Yang Xiao, Guan-Hong Li, Yuan-Hao Jin, Shou-Shan Fan
  • Patent number: 10732326
    Abstract: The disclosure relates to a hydrophobic window. The hydrophobic window includes a frame, a glass embedded in the frame, and a hydrophobic film on a surface of the glass. The hydrophobic film comprises a flexible substrate and a hydrophobic layer on a surface of the flexible substrate. The hydrophobic layer comprises a base and a patterned bulge layer on a surface of the base.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: August 4, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yuan-Hao Jin, Qun-Qing Li, Shou-Shan Fan
  • Publication number: 20200238266
    Abstract: The disclosure relates to a photocatalytic structure. The photocatalytic structure includes a carbon nanotube structure, a photocatalytic active layer coated on the carbon nanotube structure, and a metal layer including a plurality of nanoparticles located on the surface of the photocatalytic active layer. The carbon nanotube structure comprises a plurality of intersected carbon nanotubes and defines a plurality of openings, and the photocatalytic active layer is coated on the surface of the plurality of carbon nanotubes. The metal layer includes a plurality of nanoparticles located on the surface of the photocatalytic active layer.
    Type: Application
    Filed: April 10, 2019
    Publication date: July 30, 2020
    Inventors: YING-CHENG WANG, YUAN-HAO JIN, XIAO-YANG XIAO, TIAN-FU ZHANG, QUN-QING LI, SHOU-SHAN FAN
  • Publication number: 20200238265
    Abstract: The disclosure relates to a photocatalytic structure. The photocatalytic structure includes a substrate, a photocatalytic active layer, and a metal layer. The substrate, the photocatalytic active layer, and the metal layer are arranged in succession. The substrate includes a base and a patterned bulge layer on a surface of the base. The patterned bulge layer is a net-like structure comprising a plurality of strip-shaped bulges intersected with each other and a plurality of indents defined by the plurality of strip-shaped bulges. The plurality of strip-shaped bulges is an integrated structure. The photocatalytic active layer is on the surface of the patterned bulge layer. The metal layer includes a plurality of nanoparticles located on the surface of the photocatalytic active layer away from the substrate.
    Type: Application
    Filed: April 10, 2019
    Publication date: July 30, 2020
    Inventors: YING-CHENG WANG, YUAN-HAO JIN, XIAO-YANG XIAO, TIAN-FU ZHANG, QUN-QING LI, SHOU-SHAN FAN
  • Publication number: 20200212249
    Abstract: A method for making an infrared light absorber is provided, and the method includes following steps: providing a carbon nanotube array on a substrate; truncating the carbon nanotube array by dry etching a top surface of the carbon nanotube array, the top surface being away from the substrate, the carbon nanotube array comprises a plurality of carbon nanotubes substantially parallel with each other, the plurality of carbon nanotubes in the carbon nanotube array are truncated to a height in a range of 100 micrometers to 300 micrometers.
    Type: Application
    Filed: December 9, 2019
    Publication date: July 2, 2020
    Inventors: YING-CHENG WANG, ZHONG-ZHENG HUANG, YUAN-HAO JIN, QUN-QING LI, SHOU-SHAN FAN
  • Publication number: 20200209067
    Abstract: An infrared detector is provided, and the infrared detector includes: a thermoelectric element; an infrared light absorber, located on and in contact with the thermoelectric element, and configured to absorb infrared light and convert infrared light into heat; an electrical signal detector, electrically connected to the thermoelectric element and configured to detect a change in electrical performance of the thermoelectric element; wherein the infrared light absorber includes a carbon nanotube array, the carbon nanotube array includes a plurality of carbon nanotubes, a height of the plurality of carbon nanotubes are substantially the same, and the plurality of carbon nanotubes are perpendicular to the thermoelectric element.
    Type: Application
    Filed: December 9, 2019
    Publication date: July 2, 2020
    Inventors: YING-CHENG WANG, ZHONG-ZHENG HUANG, YUAN-HAO JIN, QUN-QING LI, SHOU-SHAN FAN
  • Publication number: 20200206846
    Abstract: A method for making an infrared light absorber is provided, and the method includes following steps: providing a first carbon nanotube array on a substrate; truncating the carbon nanotube array by irradiating a top surface of the carbon nanotube array by a laser beam in two directions, the top surface being away from the substrate, wherein the two directions being at an angle, the angle is in a range of 30 degrees to 90 degrees.
    Type: Application
    Filed: December 9, 2019
    Publication date: July 2, 2020
    Inventors: YING-CHENG WANG, ZHONG-ZHENG HUANG, YUAN-HAO JIN, QUN-QING LI, SHOU-SHAN FAN
  • Patent number: 10680119
    Abstract: A Schottky diode includes an insulating substrate and at least one Schottky diode unit. The at least one Schottky diode unit is located on a surface of the insulating substrate. The at least one Schottky diode unit includes a first electrode, a semiconductor structure and a second electrode. The semiconductor structure comprising a first end and a second end. The first end is laid on the first electrode; the second end is located on the surface of the insulating substrate. The semiconducting structure is nano-scale semiconductor structure. The second electrode is located on the second end.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: June 9, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yu-Dan Zhao, Xiao-Yang Xiao, Ying-Cheng Wang, Yuan-Hao Jin, Tian-Fu Zhang, Qun-Qing Li
  • Publication number: 20200150525
    Abstract: A method of making microstructures, including: setting a photoresist layer on a surface of a base; covering a surface of the photoresist layer with a photolithography mask plate, wherein the photolithography mask plate includes: a substrate; a patterned chrome layer on a surface of the substrate; a carbon nanotube layer on the patterned chrome layer, wherein a first pattern of the patterned chrome layer is the same as a second pattern of the carbon nanotube layer; a cover layer on the carbon nanotube layer; exposing the photoresist layer to form an exposed photoresist layer by irradiating the photoresist layer through the photolithography mask plate with ultraviolet light; and developing the exposed photoresist layer to obtain a patterned photoresist microstructures.
    Type: Application
    Filed: January 6, 2020
    Publication date: May 14, 2020
    Inventors: MO CHEN, Qun-Qing Li, Li-Hui Zhang, Yuan-Hao Jin, Dong An, Shou-Shan Fan
  • Publication number: 20200150526
    Abstract: A method of making microstructures, including: setting a photoresist layer on a base; covering the photoresist layer with a photolithography mask plate, wherein the photolithography mask plate includes: a substrate; a carbon nanotube layer on the substrate; a patterned chrome layer on the carbon nanotube layer so that the carbon nanotube layer is sandwiched between the patterned chrome layer and the substrate, wherein a first pattern of the patterned chrome layer is the same as a second pattern of the carbon nanotube layer; a cover layer on the patterned chrome layer; exposing the photoresist layer to form an exposed photoresist layer by irradiating the photoresist layer through the photolithography mask plate with ultraviolet light; and developing the exposed photoresist layer to obtain a patterned photoresist microstructures.
    Type: Application
    Filed: January 6, 2020
    Publication date: May 14, 2020
    Inventors: Mo Chen, Qun-Qing Li, Li-Hui Zhang, Yuan-Hao Jin, Dong An, Shou-Shan Fan
  • Publication number: 20200142296
    Abstract: A method of making microstructures, including: setting a photoresist layer on a surface of a base; covering a surface of the photoresist layer with a photolithography mask plate, wherein the photolithography mask plate includes: a substrate; a carbon nanotube composite structure on a surface of the substrate, wherein the carbon nanotube composite structure includes a carbon nanotube layer and a chrome layer coated on the carbon nanotube layer; and a cover layer on the carbon nanotube composite structure; exposing the photoresist layer to form an exposed photoresist layer by irradiating the photoresist layer through the photolithography mask plate with ultraviolet light; and developing the exposed photoresist layer to obtain a patterned photoresist microstructures.
    Type: Application
    Filed: January 6, 2020
    Publication date: May 7, 2020
    Inventors: MO CHEN, QUN-QING LI, LI-HUI ZHANG, YUAN-HAO JIN, DONG AN, SHOU-SHAN FAN
  • Patent number: 10641699
    Abstract: A method for making carrier for use in single molecule detection is related. The method includes following steps: firstly, placing a middle layer on a substrate; secondly, providing a carbon nanotube composite structure, wherein the carbon nanotube composite structure includes a carbon nanotube structure and a protective layer coated on the carbon nanotube structure, the carbon nanotube structure includes a plurality of carbon nanotubes intersected with each other and defines a plurality of openings; thirdly, placing the carbon nanotube composite structure on a surface of the middle layer, wherein parts of the surface are exposed through the plurality of openings; fourthly, forming the patterned bulge by dry etching the middle layer using the carbon nanotube composite structure as a mask, wherein the patterned bulge includes a plurality of strip-shaped bulges intersected with each other; depositing the metal layer on the patterned bulge.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: May 5, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Ying-Cheng Wang, Yuan-Hao Jin, Qun-Qing Li, Shou-Shan Fan
  • Patent number: 10606167
    Abstract: A photolithography mask plate, the photolithography mask plate including: a substrate; a carbon nanotube composite structure on a surface of the substrate, wherein the carbon nanotube composite structure comprises a carbon nanotube layer and a chrome layer coated on the carbon nanotube layer; a cover layer on the carbon nanotube composite structure.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: March 31, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Mo Chen, Qun-Qing Li, Li-Hui Zhang, Yuan-Hao Jin, Dong An, Shou-Shan Fan
  • Patent number: 10571798
    Abstract: A photolithography mask plate, the photolithography mask plate including: a substrate; a carbon nanotube layer located on the substrate; a patterned chrome layer located on the carbon nanotube layer, wherein the patterned chrome layer and the carbon nanotube layer have the same pattern; a cover layer located on the patterned chrome layer.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: February 25, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Mo Chen, Qun-Qing Li, Li-Hui Zhang, Yuan-Hao Jin, Dong An, Shou-Shan Fan
  • Patent number: 10564539
    Abstract: A photolithography mask plate, the photolithography mask plate including: a substrate; a carbon nanotube layer on the substrate; a patterned chrome layer on the carbon nanotube layer, wherein the patterned chrome layer and the carbon nanotube layer have the same pattern; a cover layer on the patterned chrome layer.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: February 18, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Mo Chen, Qun-Qing Li, Li-Hui Zhang, Yuan-Hao Jin, Dong An, Shou-Shan Fan
  • Patent number: 10533948
    Abstract: A carrier for use in single molecule detection is related. The carrier includes a substrate; a middle layer, on the substrate; and a metal layer, on the middle layer; wherein the substrate is a flexible substrate, the middle layer includes a base and a patterned bulge on the base, the patterned bulge includes a plurality of strip-shaped bulges, the metal layer is on the patterned bulge, the carrier further includes a carbon nanotube composite structure between the metal layer and the patterned bulge.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: January 14, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Ying-Cheng Wang, Yuan-Hao Jin, Qun-Qing Li, Shou-Shan Fan
  • Patent number: 10527553
    Abstract: The disclosure relates to a carrier for use in single molecule detection. The carrier includes a flexible substrate and a metal layer on the flexible substrate. The flexible substrate includes a base and a bulge pattern located on a surface of the base. The bulge pattern includes a number of strip-shaped bulges intersecting with each other to form a net and define a number of recesses. The metal layer is located on the bulge pattern. The carrier for use in single molecule detection has a relative higher SERS and can enhance the Raman scattering.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: January 7, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Ying-Cheng Wang, Yuan-Hao Jin, Qun-Qing Li, Shou-Shan Fan
  • Patent number: 10483472
    Abstract: A Schottky diode includes an insulating substrate and at least one Schottky diode unit. The at least one Schottky diode unit is located on a surface of the insulating substrate. The at least one Schottky diode unit includes a first electrode, a semiconductor structure and a second electrode. The semiconductor structure comprising a first end and a second end. The first end is laid on the first electrode, the second end is located on the surface of the insulating substrate. The semiconducting structure includes a carbon nanotube structure. The second electrode is located on the second end.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: November 19, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yu-Dan Zhao, Xiao-Yang Xiao, Ying-Cheng Wang, Yuan-Hao Jin, Tian-Fu Zhang, Qun-Qing Li