Patents by Inventor Yuhao Lu
Yuhao Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9761866Abstract: A method is provided for forming a metal battery electrode with a pyrolyzed coating. The method provides a metallorganic compound of metal (Me) and materials such as carbon (C), sulfur (S), nitrogen (N), oxygen (O), and combinations of the above-listed materials, expressed as MeXCYNZSXXOYY, where Me is a metal such as tin (Sn), antimony (Sb), or lead (Pb), or a metal alloy. The method heats the metallorganic compound, and as a result of the heating, decomposes materials in the metallorganic compound. In one aspect, decomposing the materials in the metallorganic compound includes forming a chemical reaction between the Me particles and the materials. An electrode is formed of Me particles coated by the materials. In another aspect, the Me particles coated with a material such as a carbide, a nitride, a sulfide, or combinations of the above-listed materials.Type: GrantFiled: February 3, 2017Date of Patent: September 12, 2017Assignee: Sharp Laboratories of America, Inc.Inventors: Yuhao Lu, Long Wang, Jong-Jan Lee
-
Patent number: 9745202Abstract: A method is provided for synthesizing metal cyanometallate (MCM). The method provides a solution of AXM1Y(CN)Z; where “A” is selected from a first group of metals and M1 is selected from a second group of metals. The method adds a material including M2 to the solution to form a liquid phase material that may be either a suspension or a solution. M2 is selected from the second group of metals. The method adds acid to the liquid phase material. The addition of acid to the liquid phase material decomposes the M2 material into M2-ions. Simultaneous with the addition of the acid, a precipitate of ANM1PM2Q(CN)R.FH2O is formed, where N is in a range of 1 to 2. A variation of the above-described synthesis method is also provided.Type: GrantFiled: June 5, 2015Date of Patent: August 29, 2017Assignees: Board of Regents, U of Texas System, Sharp Laboratories of America, IncInventors: Jie Song, Yuhao Lu, Long Wang
-
Patent number: 9742027Abstract: A first method for fabricating an anode for use in sodium-ion and potassium-ion batteries includes mixing a conductive carbon material having a low surface area, a hard carbon material, and a binder material. A carbon-composite material is thus formed and coated on a conductive substrate. A second method for fabricating an anode for use in sodium-ion and potassium-ion batteries mixes a metal-containing material, a hard carbon material, and binder material. A carbon-composite material is thus formed and coated on a conductive substrate. A third method for fabricating an anode for use in sodium-ion and potassium-ion batteries provides a hard carbon material having a pyrolyzed polymer coating that is mixed with a binder material to form a carbon-composite material, which is coated on a conductive substrate. Descriptions of the anodes and batteries formed by the above-described methods are also provided.Type: GrantFiled: March 13, 2015Date of Patent: August 22, 2017Assignee: Sharp Laboratories of America, Inc.Inventors: Sean Vail, Yuhao Lu, Long Wang, Motoaki Nishijima, Jong-Jan Lee
-
Patent number: 9735444Abstract: A method is provided for fabricating a graphene-doped, carbohydrate-derived hard carbon (G-HC) composite material for alkali metal-ion batteries. The method provides graphene oxide (GO) dispersed in an aqueous solution. A carbohydrate is dissolved into the aqueous solution and subsequently the water is removed to create a precipitate. In one aspect, the carbohydrate is sucrose. The precipitate is dehydrated and exposed to a thermal treatment of less than 1200 degrees C. to carbonize the carbohydrate. The result is the formation of a graphene-doped, carbohydrate-derived hard carbon (G-HC) composite. Typically, the G-HC composite is made up of graphene in the range of 0.1 and 20% by weight (wt %), and HC in the range of 80 to 99.9 wt %. The G-HC composite has a specific surface area of less than 10 square meters per gram (m2/g). A G-HC composite suitable for use in alkali metal-ion batteries electrodes is also provided.Type: GrantFiled: June 5, 2015Date of Patent: August 15, 2017Assignees: Oregon State University, Sharp Laboratories of AmericaInventors: Xiulei Ji, Wei Luo, Clement Bommier, Yuhao Lu, Sean Vail, Jong-Jan Lee
-
Patent number: 9705130Abstract: An electrochemical battery is provided with an aluminum anode current collector and an antimony (Sb)-based electrochemically active material overlying the aluminum current collector. The Sb-based electrochemically active material may be pure antimony, Sb with other metal elements, or Sb with non-metal elements. For example, the Sb-based electrochemically active material may be one of the following: Sb binary or ternary alloys of sodium, silicon, tin, germanium, bismuth, selenium, tellurium, thallium, aluminum, gold, cadmium, mercury, cesium, gallium, titanium, lead, carbon, and combinations thereof. The aluminum current collector may additionally include a material such as magnesium, iron, nickel, titanium, and combinations thereof. In one aspect, the anode further composed of a coating interposed between the aluminum current collector and the Sb-based electrochemically active material. This coating may be a non-corrodible metal or a carbonaceous material.Type: GrantFiled: August 11, 2015Date of Patent: July 11, 2017Assignee: Sharp Laboratories of America, Inc.Inventors: Xin Zhao, Sean Vail, Yuhao Lu, Motoaki Nishijima
-
Patent number: 9680152Abstract: A transition metal hexacyanoferrate (TMH) cathode battery is provided. The battery has a AxMn[Fe(CN)6]y.zH2O cathode, where the A cations are either alkali or alkaline-earth cations, such as sodium or potassium, where x is in the range of 1 to 2, where y is in the range of 0.5 to 1, and where z is in the range of 0 to 3.5. The AxMn[Fe(CN)6]y.zH2O has a rhombohedral crystal structure with Mn2+/3+ and Fe2+/3+ having the same reduction/oxidation potential. The battery also has an electrolyte, and anode made of an A metal, an A composite, or a material that can host A atoms. The battery has a single plateau charging curve, where a single plateau charging curve is defined as a constant charging voltage slope between 15% and 85% battery charge capacity. Fabrication methods are also provided.Type: GrantFiled: June 6, 2016Date of Patent: June 13, 2017Assignee: Sharp Laboratories of America, Inc.Inventors: Yuhao Lu, Hidayat Kisdarjono, Jong-Jan Lee, David Evans
-
Patent number: 9666866Abstract: A method is provided for fabricating a transition metal hexacyanometallate (TMHCM) electrode with a water-soluble binder. The method initially forms an electrode mix slurry comprising TMHCF and a water-soluble binder. The electrode mix slurry is applied to a current collector, and then dehydrated to form an electrode. The electrode mix slurry may additionally comprise a carbon additive such as carbon black, carbon fiber, carbon nanotubes, graphite, or graphene. The electrode is typically formed with TMHCM greater than 50%, by weight, as compared to a combined weight of the TMHCM, carbon additive, and binder. Also provided are a TMHCM electrode made with a water-soluble binder and a battery having a TMHCM cathode that is made with a water-soluble binder.Type: GrantFiled: July 24, 2014Date of Patent: May 30, 2017Assignee: Sharp Laboratories of America, Inc.Inventors: Long Wang, Yuhao Lu, Sean Vail
-
Publication number: 20170149053Abstract: A method is provided for forming a metal battery electrode with a pyrolyzed coating. The method provides a metallorganic compound of metal (Me) and materials such as carbon (C), sulfur (S), nitrogen (N), oxygen (O), and combinations of the above-listed materials, expressed as MeXCYNZSXXOYY, where Me is a metal such as tin (Sn), antimony (Sb), or lead (Pb), or a metal alloy. The method heats the metallorganic compound, and as a result of the heating, decomposes materials in the metallorganic compound. In one aspect, decomposing the materials in the metallorganic compound includes forming a chemical reaction between the Me particles and the materials. An electrode is formed of Me particles coated by the materials. In another aspect, the Me particles coated with a material such as a carbide, a nitride, a sulfide, or combinations of the above-listed materials.Type: ApplicationFiled: February 3, 2017Publication date: May 25, 2017Inventors: Yuhao Lu, Long Wang, Jong-Jan Lee
-
Patent number: 9660268Abstract: An alkali-ion battery is provided with a transition metal cyanometallate (TMCM) sheet cathode and a non-alkaline metal anode. The fabrication method mixes TMCM powders, conductive additives, and a polytetrafluoroethylene binder with a solution containing water, forming a wet paste. The wet paste is formed into a free-standing sheet of cathode active material, which is laminated to a cathode current collector, forming a cathode electrode. The free-standing sheet of cathode active material has a thickness typically in the range of 100 microns to 2 millimeters. The cathode electrode is assembled with a non-alkaline metal anode electrode and an ion-permeable membrane interposed between the cathode electrode and anode electrode, forming an assembly. The assembly is dried at a temperature of greater than 100 degrees C. The dried assembly is then inserted into a container (case) and electrolyte is added. Thick anodes made from free-standing sheets of active material can be similarly formed.Type: GrantFiled: October 30, 2015Date of Patent: May 23, 2017Assignee: Sharp Laboratories of America, Inc.Inventors: Jie Song, Yuhao Lu, Xin Zhao
-
Patent number: 9660241Abstract: A method is provided for forming a sodium-containing particle electrolyte structure. The method provides sodium-containing particles (e.g., NASICON), dispersed in a liquid phase polymer, to form a polymer film with sodium-containing particles distributed in the polymer film. The liquid phase polymer is a result of dissolving the polymer in a solvent or melting the polymer in an extrusion process. In one aspect, the method forms a plurality of polymer film layers, where each polymer film layer includes sodium-containing particles. For example, the plurality of polymer film layers may form a stack having a top layer and a bottom layer, where with percentage of sodium-containing particles in the polymer film layers increasing from the bottom layer to the top layer. In another aspect, the sodium-containing particles are coated with a dopant. A sodium-containing particle electrolyte structure and a battery made using the sodium-containing particle electrolyte structure are also presented.Type: GrantFiled: March 6, 2014Date of Patent: May 23, 2017Assignee: Sharp Laboratories of America, Inc.Inventors: Long Wang, Yuhao Lu, Jong-Jan Lee, Sean Vail
-
Patent number: 9634317Abstract: A reactive separator is provided for a metal-ion battery. The reactive separator is made up of a reactive layer that is chemically reactive to alkali or alkaline earth metals, and has a first side and a second side. A first non-reactive layer, chemically non-reactive with alkali or alkaline earth metals, is adjacent to the reactive layer first side. A second non-reactive layer, also chemically non-reactive with alkali or alkaline earth metals, is adjacent to the reactive layer second side. More explicitly, the first and second non-reactive layers are defined as having less than 5 percent by weight (wt %) of materials able to participate in electrochemical reactions with alkali or alkaline earth metals. The reactive layer may be formed as a porous membrane embedded with reactive components, where the porous membrane is carbon or a porous polymer. Alternatively, the reactive layer is formed as a polymer gel embedded with reactive components.Type: GrantFiled: March 31, 2014Date of Patent: April 25, 2017Assignee: Sharp Laboratories of America, Inc.Inventors: Long Wang, Yuhao Lu
-
Patent number: 9627671Abstract: A method is provided for forming a metal battery electrode with a pyrolyzed coating. The method provides a metallorganic compound of metal (Me) and materials such as carbon (C), sulfur (S), nitrogen (N), oxygen (O), and combinations of the above-listed materials, expressed as MeXCYNZSXXOYY, where Me is a metal such as tin (Sn), antimony (Sb), or lead (Pb), or a metal alloy. The method heats the metallorganic compound, and as a result of the heating, decomposes materials in the metallorganic compound. In one aspect, decomposing the materials in the metallorganic compound includes forming a chemical reaction between the Me particles and the materials. An electrode is formed of Me particles coated by the materials. In another aspect, the Me particles coated with a material such as a carbide, a nitride, a sulfide, or combinations of the above-listed materials.Type: GrantFiled: February 28, 2014Date of Patent: April 18, 2017Assignee: Sharp Laboratories of America, Inc.Inventors: Yuhao Lu, Long Wang, Jong-Jan Lee
-
Patent number: 9620815Abstract: A method is provided for the self-repair of a transition metal cyanometallate (TMCM) battery electrode. The battery is made from a TMCM cathode, an anode, and an electrolyte including solution formed from a solvent and an alkali or alkaline earth salt. The electrolyte includes an additive represented as G-R-g: where G and g are independently include materials with nitrogen (N) sulfur (S), oxygen (O), or combinations of the above-recited elements; and where R is an alkene or alkane group. In response to charging and discharging the battery in a plurality of cycles, the method creates vacancies in a surface of the TMCM cathode. Then, the method fills the vacancies in the surface of the TMCM cathode with the electrolyte additive. An electrolyte and TMCM battery using the above-mentioned additives are also provided.Type: GrantFiled: June 30, 2014Date of Patent: April 11, 2017Assignee: Sharp Laboratories of America, Inc.Inventors: Yuhao Lu, Long Wang, Sean Vail
-
Patent number: 9608268Abstract: A battery structure is provided for making alkali ion and alkaline-earth ion batteries. The battery has a hexacyanometallate cathode, a non-metal anode, and non-aqueous electrolyte. A method is provided for forming the hexacyanometallate battery cathode and non-metal battery anode prior to the battery assembly. The cathode includes hexacyanometallate particles overlying a current collector. The hexacyanometallate particles have the chemical formula A?n?AmM1xM2y(CN)6, and have a Prussian Blue hexacyanometallate crystal structure.Type: GrantFiled: April 29, 2015Date of Patent: March 28, 2017Assignee: Sharp Laboratories of America, Inc.Inventors: Yuhao Lu, Jong-Jan Lee, Motoaki Nishijima, Seizoh Kakimoto
-
Patent number: 9608264Abstract: An air cathode battery is provided that uses a zinc slurry anode with carbon additives. The battery is made from an air cathode and a zinc slurry anode. The zinc slurry anode includes zinc particles, an alkaline electrolyte, with a complexing agent and carbon additives in the alkaline electrolyte. A water permeable ion-exchange membrane and electrolyte chamber separate the zinc slurry from the air cathode. The carbon additives may, for example, be graphite, carbon fiber, carbon black, or carbon nanoparticles. The proportion of carbon additives to zinc is in the range of 2.5 to 10% by weight. The proportion of alkaline electrolyte in the zinc slurry is in the range of 50 to 80% by volume.Type: GrantFiled: August 29, 2014Date of Patent: March 28, 2017Assignee: Sharp Laboratories of America, Inc.Inventors: Hidayat Kisdarjono, Yuhao Lu, Jong-Jan Lee, David Evans, Long Wang
-
Patent number: 9595706Abstract: A protected transition metal hexacyanoferrate (TMHCF) battery cathode is presented, made from AxMyFez(CN)n.mH2O particles, where the A cations are either alkali or alkaline-earth cations, and M is a transition metal. In one aspect the cathode pas tion layer may be materials such as oxides, simple salts, carbonaceous materials, or polymers that form a film overlying the AxMyFez(CN)n.mH2O particles. In another aspect, the cathode passivation layer is a material such as oxygen, nitrogen, sulfur, fluorine, chlorine, or iodine that interacts with the AxMyFez(CN)n.mH2O particles, to cure defects in the AxMyFez(CN)n.mH2O crystal lattice structure. Also presented are TMHCF battery synthesis methods.Type: GrantFiled: December 11, 2015Date of Patent: March 14, 2017Assignee: Sharp Laboratories of America, Inc.Inventors: Yuhao Lu, Jong-Jan Lee, David Evans
-
Patent number: 9583751Abstract: A method is provided for fabricating a battery using an anode preloaded with consumable metals. The method forms an ion-permeable membrane immersed in an electrolyte. A preloaded anode is immersed in the electrolyte, comprising MeaX, where X is a material such as carbon, metal capable of being alloyed with Me, intercalation oxides, electrochemically active organic compounds, and combinations of the above-listed materials. Me is a metal such as alkali metals, alkaline earth metals, and combinations of the above-listed metals. A cathode is also immersed in the electrolyte and separated from the preloaded anode by the ion-permeable membrane. The cathode comprises M1YM2Z(CN)N.MH2O. After a plurality of initial charge and discharge operations are preformed, an anode is formed comprising MebX overlying the current collector in a battery discharge state, where 0?b<a.Type: GrantFiled: March 6, 2014Date of Patent: February 28, 2017Assignee: Sharp Laboratories of America, Inc.Inventors: Yuhao Lu, Long Wang, Jong-Jan Lee
-
Publication number: 20170047593Abstract: A battery with a corrosion-resistant ion-exchange membrane system is presented. The battery has an acidic catholyte, an anode metal that is chemically reactive towards water, and an ion-exchange membrane system. Some examples of anode metals include alkali metals, alkaline earth metals, and aluminum (Al). The ion-exchange membrane system includes a solid, cation-permeable, water-impermeable first membrane adjacent to the anode, prone to decomposition upon chemical reaction with an acid, an anion-permeable second membrane adjacent to the cathode, and a buffer compartment including a solution, interposed between the first membrane and the second membrane. In response to discharging the battery, the solution in the buffer compartment accepts cations from the anode and anions from the cathode, forming a cation-anion salt solution in the buffer compartment. The second membrane prevents the transportation of protons from the catholyte to the buffer compartment, and so prevents the corrosion of the first membrane.Type: ApplicationFiled: October 31, 2016Publication date: February 16, 2017Inventors: Yuhao Lu, Sean Vail
-
Patent number: 9567231Abstract: A system and method are presented for the large scale synthesis of metal cyanometallates (MCMs). First and second precursor solutions are added to a main reactor, where the first precursor includes M1 metal cations. The second precursor solution includes AX?M2(CN)Z?, where M1 and M2 are from a first group of metals and A is from a second group of metals including alkali or alkaline earth metals. In response to stirring the first and second precursors, MCM particles are formed with the formula AXM1NM2M(CN)Z.d[H2O]ZEO.e[H2O]BND, in solution. In response to aging in the secondary reactor, the size of the MCM particles is increases. The aged MCM particles in solution are then transferred to a separation tank, where the aged MCM particles are filtered from the solution and collected. The solution reclaimed from the separation tank back is added back into the main reactor.Type: GrantFiled: August 6, 2016Date of Patent: February 14, 2017Assignee: Sharp Laboratories of America, Inc.Inventors: Yuhao Lu, Wei Pan, Sean Vail, Jong-Jan Lee
-
Patent number: 9559358Abstract: A battery structure is provided for making alkali ion and alkaline-earth ion batteries. The battery has a hexacyanometallate cathode, a non-metal anode, and non-aqueous electrolyte. A method is provided for forming the hexacyanometallate battery cathode and non-metal battery anode prior to the battery assembly. The cathode includes hexacyanometallate particles overlying a current collector. The hexacyanometallate particles have the chemical formula A?n?AmM1xM2y(CN)6, and have a Prussian Blue hexacyanometallate crystal structure.Type: GrantFiled: April 17, 2012Date of Patent: January 31, 2017Assignee: Sharp Laboratories of America, Inc.Inventors: Yuhao Lu, Jong-Jan Lee, Motoaki Nishijima, Seizoh Kakimoto