Patents by Inventor Yuhao Lu

Yuhao Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140335409
    Abstract: A method is provided for fabricating a transition metal hexacyanometallate (TMHCM) electrode with a water-soluble binder. The method initially forms an electrode mix slurry comprising TMHCF and a water-soluble binder. The electrode mix slurry is applied to a current collector, and then dehydrated to form an electrode. The electrode mix slurry may additionally comprise a carbon additive such as carbon black, carbon fiber, carbon nanotubes, graphite, or graphene. The electrode is typically formed with TMHCM greater than 50%, by weight, as compared to a combined weight of the TMHCM, carbon additive, and binder. Also provided are a TMHCM electrode made with a water-soluble binder and a battery having a TMHCM cathode that is made with a water-soluble binder.
    Type: Application
    Filed: July 24, 2014
    Publication date: November 13, 2014
    Inventors: Long Wang, Yuhao Lu, Sean Vail
  • Publication number: 20140264160
    Abstract: Methods are presented for synthesizing metal cyanometallate (MCM). A first method provides a first solution of AXM2Y(CN)Z, to which a second solution including M1 is dropwise added. As a result, a precipitate is formed of ANM1PM2Q(CN)R·FH2O, where N is in the range of 1 to 4. A second method for synthesizing MCM provides a first solution of M2C(CN)B, which is dropwise added to a second solution including M1. As a result, a precipitate is formed of M1[M2S(CN)G]1/T·DH2O, where S/T is greater than or equal to 0.8. Low vacancy MCM materials are also presented.
    Type: Application
    Filed: May 29, 2014
    Publication date: September 18, 2014
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Yuhao Lu, Long Wang, Sean Vail, Jong-Jan Lee
  • Publication number: 20140239920
    Abstract: A method is provided for charging a supercapacitor. The method initially provides a supercapacitor with a metal cyanometallate (MCM) particle anode, an electrolyte including a salt (DB) made up of cations (D+) anions (B?), and a cathode including carbonaceous materials (?). The method connects an external charging device between the anode and cathode, and the charging device supplies electrons to the anode and accepting electrons from the cathode. In response to the charging device, cations are inserted into the anode while anions are absorbed on the surface of the cathode. A supercapacitor device is also presented.
    Type: Application
    Filed: May 10, 2014
    Publication date: August 28, 2014
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Yuhao Lu, Long Wang, Jong-Jan Lee
  • Publication number: 20140239907
    Abstract: A method is provided for forming a rechargeable metal-ion battery with a non-aqueous hybrid ion electrolyte. The method provides a transition metal hexacyanometallate (TMHCM) cathode (AXM1YM2Z(CN)N.MH2O), where “A” is from a first group of metals, and M1 and M2 are transition metals. The electrolyte includes a first type of cation from the first group of metals, different than “A”. The method connects the cathode and anode to external circuitry to perform initial charge/discharge operations. As a result, a hybrid ion electrolyte is formed including the first type of cation and “A” cations. Subsequently, cations are inserted into the anode during charging, which alternatively may be only “A” cations, only the first type of cation, or both the “A” cations and the first type of cation. Only “A” cations, only the first type, or both “A” and the first type of cation are inserted into the TMHCM during discharge.
    Type: Application
    Filed: May 7, 2014
    Publication date: August 28, 2014
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Long Wang, Yuhao Lu, David Evans
  • Publication number: 20140205883
    Abstract: A reactive separator is provided for a metal-ion battery. The reactive separator is made up of a reactive layer that is chemically reactive to alkali or alkaline earth metals, and has a first side and a second side. A first non-reactive layer, chemically non-reactive with alkali or alkaline earth metals, is adjacent to the reactive layer first side. A second non-reactive layer, also chemically non-reactive with alkali or alkaline earth metals, is adjacent to the reactive layer second side. More explicitly, the first and second non-reactive layers are defined as having less than 5 percent by weight (wt %) of materials able to participate in electrochemical reactions with alkali or alkaline earth metals. The reactive layer may be formed as a porous membrane embedded with reactive components, where the porous membrane is carbon or a porous polymer. Alternatively, the reactive layer is formed as a polymer gel embedded with reactive components.
    Type: Application
    Filed: March 31, 2014
    Publication date: July 24, 2014
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Long Wang, Yuhao Lu
  • Publication number: 20140186707
    Abstract: A method is provided for fabricating a battery using an anode preloaded with consumable metals. The method forms an ion-permeable membrane immersed in an electrolyte. A preloaded anode is immersed in the electrolyte, comprising MeaX, where X is a material such as carbon, metal capable of being alloyed with Me, intercalation oxides, electrochemically active organic compounds, and combinations of the above-listed materials. Me is a metal such as alkali metals, alkaline earth metals, and combinations of the above-listed metals. A cathode is also immersed in the electrolyte and separated from the preloaded anode by the ion-permeable membrane. The cathode comprises M1YM2Z(CN)N.MH2O. After a plurality of initial charge and discharge operations are preformed, an anode is formed comprising MebX overlying the current collector in a battery discharge state, where 0?b<a.
    Type: Application
    Filed: March 6, 2014
    Publication date: July 3, 2014
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Yuhao Lu, Long Wang, Jong-Jan Lee
  • Publication number: 20140186706
    Abstract: A method is presented for fabricating an anode preloaded with consumable metals. The method provides a material (X), which may be one of the following materials: carbon, metals able to be electrochemically alloyed with a metal (Me), intercalation oxides, electrochemically active organic compounds, and combinations of the above-listed materials. The method loads the metal (Me) into the material (X). Typically, Me is an alkali metal, alkaline earth metal, or a combination of the two. As a result, the method forms a preloaded anode comprising Me/X for use in a battery comprising a M1YM2Z(CN)N·MH2O cathode, where M1 and M2 are transition metals. The method loads the metal (Me) into the material (X) using physical (mechanical) mixing, a chemical reaction, or an electrochemical reaction. Also provided is preloaded anode, preloaded with consumable metals.
    Type: Application
    Filed: March 6, 2014
    Publication date: July 3, 2014
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Long Wang, Yuhao Lu, Jong-Jan Lee
  • Publication number: 20140186719
    Abstract: A method is provided for forming a sodium-containing particle electrolyte structure. The method provides sodium-containing particles (e.g., NASICON), dispersed in a liquid phase polymer, to form a polymer film with sodium-containing particles distributed in the polymer film. The liquid phase polymer is a result of dissolving the polymer in a solvent or melting the polymer in an extrusion process. In one aspect, the method forms a plurality of polymer film layers, where each polymer film layer includes sodium-containing particles. For example, the plurality of polymer film layers may form a stack having a top layer and a bottom layer, where with percentage of sodium-containing particles in the polymer film layers increasing from the bottom layer to the top layer. In another aspect, the sodium-containing particles are coated with a dopant. A sodium-containing particle electrolyte structure and a battery made using the sodium-containing particle electrolyte structure are also presented.
    Type: Application
    Filed: March 6, 2014
    Publication date: July 3, 2014
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Long Wang, Yuhao Lu, Jong-Jan Lee
  • Publication number: 20140176077
    Abstract: A mechanism is presented for shielding a cathode in a metal cyanometallate battery. A battery is provided with an anode, a cathode, an electrolyte, and an ion-permeable membrane separating the anode from the cathode. The cathode is made up of a plurality of metal cyanometallate layers overlying the current collector. At least one of the metal cyanometallate layers is an active layer formed from an active material AXM1YM2Z(CN)N.MH2O, where “A” is an alkali metal, alkaline earth metal, or combination thereof. At least one of the metal cyanometallate layers is a shield layer comprising less than 50 percent by weight (wt %) active material. In response to applying an external voltage potential between the cathode and the anode, the method charges the battery. Upon discharge, the shield layer blocks metal particles from contacting active layers. Simultaneously, the shield layer transports metal ions from the electrolyte to the active layers.
    Type: Application
    Filed: February 28, 2014
    Publication date: June 26, 2014
    Applicant: SHARP LABORATORIES OF AMERICA, INC.
    Inventors: Yuhao Lu, Long Wang, Jong-Jan Lee
  • Publication number: 20140178761
    Abstract: A method is provided for forming a metal battery electrode with a pyrolyzed coating. The method provides a metallorganic compound of metal (Me) and materials such as carbon (C), sulfur (S), oxygen (O), and combinations of the above-listed materials, expressed as MeXCYNZSXXOYY, where Me is a metal such as tin (Sn), antimony (Sb), or lead (Pb), or a metal alloy. The method heats the metallorganic compound, and as a result of the heating, decomposes materials in the metallorganic compound. In one aspect, decomposing the materials in the metallorganic compound includes forming a chemical reaction between the Me particles and the materials. An electrode is formed of Me particles coated by the materials. In another aspect, the Me particles coated with a material such as a carbide, a nitride, a sulfide, or combinations of the above-listed materials.
    Type: Application
    Filed: February 28, 2014
    Publication date: June 26, 2014
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Yuhao Lu, Long Wang, Jong-Jan Lee
  • Publication number: 20140154575
    Abstract: A method is provided for fabricating a cyanometallate cathode battery. The method provides a cathode of AXM1YM2Z(CN)N.MH2O, where “A” is selected from a first group of metals, and where M1 and M2 are transition metals. The method provides an anode and a metal ion-permeable membrane separating the anode from the cathode. A third electrode is also provided including “B” metal ions selected from the first group of metals. Typically, the first group of metals includes alkali and alkaline metals. The method intercalates “B” metal ions from the third electrode to the anode, the cathode, or both the anode and cathode to form a completely fabricated battery. In one aspect, a solid electrolyte interface (SEI) layer including the “B” metal ions overlies a surface of the anode, the cathode, or both the anode and cathode. A cyanometallate cathode battery is also provided.
    Type: Application
    Filed: February 6, 2014
    Publication date: June 5, 2014
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Yuhao Lu, Long Wang, Jong-Jan Lee
  • Publication number: 20140075745
    Abstract: An alkali/oxidant battery is provided with an associated method of creating battery capacity. The battery is made from an anode including a reduced first alkali metal such as lithium (Li), sodium (Na), and potassium (K), when the battery is charged. The battery's catholyte includes an element, in the battery charged state, such as nickel oxyhydroxide (NiOOH), magnesium(IV) (oxide Mn(4+)O2), or iron(III) oxyhydroxide (Fe(3+)(OH)3), with the alkali metal hydroxide. An alkali metal ion permeable separator is interposed between the anolyte and the catholyte. For example, if the catholyte includes nickel(II) hydroxide (Ni(OH)2) in a battery discharged state, then it includes NiOOH in a battery charged state. To continue the example, the anolyte may include dissolved lithium ions (Li+) in a discharged state, with solid phase reduced Li formed on the anode in the battery charged state.
    Type: Application
    Filed: November 27, 2013
    Publication date: March 20, 2014
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Yuhao Lu, Hidayat Kisdarjono, Jong-Jan Lee, David R. Evans
  • Publication number: 20140050982
    Abstract: A method is provided for synthesizing sodium iron(II)-hexacyanoferrate(II). A Fe(CN)6 material is mixed with the first solution and either an anti-oxidant or a reducing agent. The Fe(CN)6 material may be either ferrocyanide ([Fe(CN)6]4?) or ferricyanide ([Fe(CN)6]3?). As a result, sodium iron(II)-hexacyanoferrate(II) (Na1+XFe[Fe(CN)6]Z.MH2O is formed, where X is less than or equal to 1, and where M is in a range between 0 and 7. In one aspect, the first solution including includes A ions, such as alkali metal ions, alkaline earth metal ions, or combinations thereof, resulting in the formation of Na1+XAYFe[Fe(CN)6]Z.MH2O, where Y is less than or equal to 1. Also provided are a Na1+XFe[Fe(CN)6]Z.MH2O battery and Na1+XFe[Fe(CN)6]Z.MH2O battery electrode.
    Type: Application
    Filed: October 30, 2013
    Publication date: February 20, 2014
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Yuhao Lu, Sean Andrew Vail
  • Publication number: 20140037999
    Abstract: A battery is provided with an associated method for transporting metal-ions in the battery using a low temperature molten salt (LTMS). The battery comprises an anode, a cathode formed from a LTMS having a liquid phase at a temperature of less than 150° C., a current collector submerged in the LTMS, and a metal-ion permeable separator interposed between the LTMS and the anode. The method transports metal-ions from the separator to the current collector in response to the LTMS acting simultaneously as a cathode and an electrolyte. More explicitly, metal-ions are transported from the separator to the current collector by creating a liquid flow of LTMS interacting with the current collector and separator.
    Type: Application
    Filed: August 1, 2012
    Publication date: February 6, 2014
    Inventors: Yuhao Lu, Sean Andrew Vail, Gregory M. Stecker, Jong-Jan Lee
  • Publication number: 20140038044
    Abstract: A transition metal hexacyanometallate (TMHCM)-conductive polymer (CP) composite electrode is provided. The battery electrode is made up of a current collector and a transition metal hexacyanometallate-conductive polymer composite overlying the current collector. The transition metal hexacyanometallate-conductive polymer includes a AXM1YM2Z(CN)N.MH2O material, where A may be alkali metal ions, alkaline earth metal ions, ammonium ions, or combinations thereof, and M1 and M2 are transition metal ions. The transition metal hexacyanometallate-conductive polymer composite also includes a conductive polymer material. In one aspect, the conductive polymer material is polyaniline (PANI) or polypyrrole (Ppy). Also presented herein are methods for the fabrication of a TMHCM-CP composite.
    Type: Application
    Filed: October 22, 2013
    Publication date: February 6, 2014
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Sean Andrew Vail, Yuhao Lu, David Russell Evans, Jong-Jan Lee
  • Publication number: 20140038000
    Abstract: A metal flow-through battery is provided, with ion exchange membrane. The flow-through battery is primarily made up of an anode slurry, a cathode slurry, and a hydroxide (OH?) anion exchange membrane interposed between the anode slurry and the cathode slurry, The anode and cathode slurries are both aqueous slurries. The anode slurry includes a metal, and associated oxides, such as magnesium (Mg), aluminum (Al), iron (Fe), copper (Cu), or zinc (Zn). The cathode slurry includes a chemical agent such as nickel oxyhydroxide (NiOOH), nickel (II) hydroxide (Ni(OH)2), manganese oxide (MnO2), manganese (II) oxide (Mn2O3), iron (III) oxide (Fe2O3), iron (III) oxide (FeO), iron (III) hydroxide (Fe(OH)), or combinations of the above-referenced materials. A method is also provided for forming a voltage potential across a flow-through battery.
    Type: Application
    Filed: September 30, 2013
    Publication date: February 6, 2014
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Yuhao Lu, Jong-Jan Lee, Hidayat Kisdarjono
  • Publication number: 20130266860
    Abstract: A transition metal hexacyanoferrate (TMHCF) battery electrode is provided with a Fe(CN)6 additive. The electrode is made from AxMyFez(CN)n.mH2O particles overlying a current collector, where the A cations are either alkali and alkaline-earth cations such as sodium (Na), potassium (K), calcium (Ca), or magnesium (Mg), and M is a transition metal. A Fe(CN)6 additive modifies the AxMyFez(CN)n.mH2O particles. The Fe(CN)6 additive may be ferrocyanide ([Fe(CN)6]4?) or ferricyanide ([Fe(CN)6]3?). Also provided are a related TMHCF battery with Fe(CN)6 additive, TMHCF fabrication process, and TMHCF battery fabrication process.
    Type: Application
    Filed: May 20, 2013
    Publication date: October 10, 2013
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Yuhao Lu, Jong-Jan Lee, David Evans
  • Publication number: 20130266861
    Abstract: A method is provided for synthesizing a metal-doped transition metal hexacyanoferrate (TMHCF) battery electrode. The method prepares a first solution of AxFe(CN)6 and Fe(CN)6, where A cations may be alkali or alkaline-earth cations. The method adds the first solution to a second solution containing M-ions and M?-ions. M is a transition metal, and M? is a metal dopant. Subsequent to stirring, the mixture is precipitated to form AxMcM?dFez(CN)n.mH2O particles. The AxMcM?dFez(CN)n.mH2O particles have a framework and interstitial spaces in the framework, where M and M? occupy positions in the framework. Alternatively, the method prepares AaA?bMyFez(CN)n.mH2O particles. A and A? occupy interstitial spaces in the AaA?bMyFez(CN)n.mH2O particle framework. A metal-doped TMHCF electrode is also provided.
    Type: Application
    Filed: June 1, 2013
    Publication date: October 10, 2013
    Inventors: Yuhao Lu, Jong-Jan Lee, David Evans
  • Publication number: 20130260232
    Abstract: A battery structure is provided for making alkali ion and alkaline-earth ion batteries. The battery has a hexacyanometallate cathode, a non-metal anode, and non-aqueous electrolyte. A method is provided for forming the hexacyanometallate battery cathode and non-metal battery anode prior to the battery assembly. The cathode includes hexacyanometallate particles overlying a current collector. The hexacyanometallate particles have the chemical formula A?n, AmM1xM2y(CN)6, and have a Prussian Blue hexacyanometallate crystal structure.
    Type: Application
    Filed: April 17, 2012
    Publication date: October 3, 2013
    Inventors: Yuhao Lu, Jong-Jan Lee, Motoaki Nishijima, Seizoh Kakimoto
  • Publication number: 20130260222
    Abstract: A method is provided for forming a metal-ion battery electrode with large interstitial spacing. A working electrode with hexacyanometallate particles overlies a current collector. The hexacyanometallate particles have a chemical formula AmM1xM2y(CN)6·zH2O, and have a Prussian Blue hexacyanometallate crystal structure, where A is either alkali or alkaline-earth cations. M1 and M2 are metals with 2+ or 3+ valance positions. The working electrode is soaked in an organic first electrolyte including a salt including alkali or alkaline earth cations. A first electric field is created in the first electrolyte between the working electrode and a first counter electrode, causing A cations and water molecules to he simultaneously removed from interstitial spaces in the Prussian Blue hexacyanometallate crystal structure, forming hexacyanometallate particles having the chemical formula of Am?mM1xM2y(CN)6·z?H2O, where m?<m and z?<z, overlying the working electrode.
    Type: Application
    Filed: March 28, 2012
    Publication date: October 3, 2013
    Inventors: Yuhao Lu, Jong-Jan Lee