Patents by Inventor Yukinori SHIMA

Yukinori SHIMA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11972945
    Abstract: A semiconductor device having favorable electrical characteristics is provided. The semiconductor device is manufactured by a first step of forming a semiconductor layer containing a metal oxide, a second step of forming a first insulating layer, a third step of forming a first conductive film over the first insulating layer, a fourth step of etching part of the first conductive film to form a first conductive layer, thereby forming a first region over the semiconductor layer that overlaps with the first conductive layer and a second region over the semiconductor layer that does not overlap with the first conductive layer, and a fifth step of performing first treatment on the conductive layer. The first treatment is plasma treatment in an atmosphere including a mixed gas of a first gas containing an oxygen element but not containing a hydrogen element, and a second gas containing a hydrogen element but not containing an oxygen element.
    Type: Grant
    Filed: May 13, 2022
    Date of Patent: April 30, 2024
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kenichi Okazaki, Yukinori Shima
  • Patent number: 11961918
    Abstract: A semiconductor device which has favorable electrical characteristics, a method for manufacturing a semiconductor device with high productivity, and a method for manufacturing a semiconductor device with a high yield are provided.
    Type: Grant
    Filed: August 24, 2022
    Date of Patent: April 16, 2024
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yasutaka Nakazawa, Yukinori Shima, Kenichi Okazaki, Junichi Koezuka, Shunpei Yamazaki
  • Publication number: 20240113229
    Abstract: To reduce defects in an oxide semiconductor film in a semiconductor device. To improve electrical characteristics of and reliability in the semiconductor device including an oxide semiconductor film. A method for manufacturing a semiconductor device includes the steps of forming a gate electrode and a gate insulating film over a substrate, forming an oxide semiconductor film over the gate insulating film, forming a pair of electrodes over the oxide semiconductor film, forming a first oxide insulating film over the oxide semiconductor film and the pair of electrodes by a plasma CVD method in which a film formation temperature is 280° C. or higher and 400° C. or lower, forming a second oxide insulating film over the first oxide insulating film, and performing heat treatment at a temperature of 150° C. to 400° C. inclusive, preferably 300° C. to 400° C. inclusive, further preferably 320° C. to 370° C. inclusive.
    Type: Application
    Filed: November 30, 2023
    Publication date: April 4, 2024
    Inventors: Junichi KOEZUKA, Yukinori SHIMA, Suzunosuke HIRAISHI, Kenichi OKAZAKI
  • Publication number: 20240105734
    Abstract: The stability of a step of processing a wiring formed using copper, aluminum, gold, silver, molybdenum, or the like is increased. Moreover, the concentration of impurities in a semiconductor film is reduced. Moreover, the electrical characteristics of a semiconductor device are improved. In a transistor including an oxide semiconductor film, an oxide film in contact with the oxide semiconductor film, and a pair of conductive films being in contact with the oxide film and including copper, aluminum, gold, silver, molybdenum, or the like, the oxide film has a plurality of crystal parts and has c-axis alignment in the crystal parts, and the c-axes are aligned in a direction parallel to a normal vector of a top surface of the oxide semiconductor film or the oxide film.
    Type: Application
    Filed: December 7, 2023
    Publication date: March 28, 2024
    Inventors: Shunpei YAMAZAKI, Junichi KOEZUKA, Yasutaka NAKAZAWA, Yukinori SHIMA, Masami JINTYOU, Masayuki SAKAKURA, Motoki NAKASHIMA
  • Patent number: 11942555
    Abstract: A semiconductor device with favorable electric characteristics is provided. The semiconductor device includes a first insulating layer, a second insulating layer, an oxide semiconductor layer, and first to third conductive layers. The oxide semiconductor layer includes a region in contact with the first insulating layer, the first conductive layer is connected to the oxide semiconductor layer, and the second conductive layer is connected to the oxide semiconductor layer. The second insulating layer includes a region in contact with the oxide semiconductor layer, and the third conductive layer includes a region in contact with the second insulating layer. The oxide semiconductor layer includes first to third regions. The first region and the second region are separated from each other, and the third region is located between the first region and the second region. The third region and the third conductive layer overlap with each other with the second insulating layer located therebetween.
    Type: Grant
    Filed: April 13, 2023
    Date of Patent: March 26, 2024
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei Yamazaki, Junichi Koezuka, Masami Jintyou, Yukinori Shima
  • Patent number: 11942554
    Abstract: In a transistor that includes an oxide semiconductor, a change in electrical characteristics is suppressed and the reliability is improved. A semiconductor device that includes a transistor is provided. The transistor includes a first conductive film that functions as a first gate electrode, a first gate insulating film, a first oxide semiconductor film that includes a channel region, a second gate insulating film, and a second oxide semiconductor film and a second conductive film that function as a second gate electrode. The second oxide semiconductor film includes a region higher in carrier density than the first oxide semiconductor film. The second conductive film includes a region in contact with the first conductive film.
    Type: Grant
    Filed: January 27, 2022
    Date of Patent: March 26, 2024
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yasuharu Hosaka, Yukinori Shima, Masataka Nakada, Masami Jintyou
  • Patent number: 11935962
    Abstract: A semiconductor device having favorable characteristics is provided. A semiconductor device having stable electrical characteristics is provided. An island-shaped insulating layer containing an oxide is provided in contact with a bottom surface of a semiconductor layer containing a metal oxide that exhibits semiconductor characteristics. The insulating layer containing an oxide is provided in contact with a portion of the semiconductor layer to be a channel formation region and is not provided under portions to be low-resistance regions.
    Type: Grant
    Filed: May 16, 2022
    Date of Patent: March 19, 2024
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junichi Koezuka, Masami Jintyou, Yukinori Shima
  • Patent number: 11929412
    Abstract: A semiconductor device with favorable electrical characteristics is provided. A semiconductor device with stable electrical characteristics is provided. The semiconductor device includes a first insulating layer, a second insulating layer, a third insulating layer, a fourth insulating layer, a semiconductor layer, and a first conductive layer. The second insulating layer is positioned over the first insulating layer and the island-shaped semiconductor layer is positioned over the second insulating layer. The second insulating layer has an island shape having an end portion outside a region overlapping with the semiconductor layer. The fourth insulating layer covers the second insulating layer, the semiconductor layer, the third insulating layer, and the first conductive layer, is in contact with part of a top surface of the semiconductor layer, and is in contact with the first insulating layer outside the end portion of the second insulating layer.
    Type: Grant
    Filed: July 18, 2022
    Date of Patent: March 12, 2024
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masami Jintyou, Takahiro Iguchi, Yukinori Shima, Kenichi Okazaki
  • Publication number: 20240079479
    Abstract: To reduce defects in an oxide semiconductor film in a semiconductor device. To improve the electrical characteristics and the reliability of a semiconductor device including an oxide semiconductor film. In a semiconductor device including a transistor including a gate electrode formed over a substrate, a gate insulating film covering the gate electrode, a multilayer film overlapping with the gate electrode with the gate insulating film provided therebetween, and a pair of electrodes in contact with the multilayer film, a first oxide insulating film covering the transistor, and a second oxide insulating film formed over the first oxide insulating film, the multilayer film includes an oxide semiconductor film and an oxide film containing In or Ga, the first oxide insulating film is an oxide insulating film through which oxygen is permeated, and the second oxide insulating film is an oxide insulating film containing more oxygen than that in the stoichiometric composition.
    Type: Application
    Filed: November 13, 2023
    Publication date: March 7, 2024
    Inventors: Junichi KOEZUKA, Yukinori SHIMA, Hajime TOKUNAGA, Toshinari SASAKI, Keisuke MURAYAMA, Daisuke MATSUBAYASHI
  • Publication number: 20240079502
    Abstract: A semiconductor device with favorable electrical characteristics is to be provided. A highly reliable semiconductor device is to be provided. A semiconductor device with lower power consumption is to be provided. The semiconductor device includes a gate electrode, a first insulating layer over the gate electrode, a metal oxide layer over the first insulating layer, a pair of electrodes over the metal oxide layer, and a second insulating layer over the pair of electrodes. The first insulating layer includes a first region and a second region. The first region has a region being in contact with the metal oxide layer and containing more oxygen than the second region. The second region has a region containing more nitrogen than the first region. The metal oxide layer has at least a concentration gradient of oxygen in a thickness direction, and the concentration gradient becomes high on a first region side and on a second region side.
    Type: Application
    Filed: November 9, 2023
    Publication date: March 7, 2024
    Inventors: Junichi KOEZUKA, Kenichi OKAZAKI, Yukinori SHIMA, Yasutaka NAKAZAWA, Yasuharu HOSAKA, Shunpei YAMAZAKI
  • Publication number: 20240072073
    Abstract: A semiconductor device having favorable electrical characteristics is provided. A highly reliable semiconductor device is provided. The semiconductor device includes a first transistor, a second transistor, a first insulating layer, and a second insulating layer. The first transistor includes a first semiconductor layer, a first gate insulating layer, and a first gate electrode. The first semiconductor layer includes a metal oxide. The second transistor includes a second semiconductor layer, a second gate insulating layer, and a second gate electrode. The second semiconductor layer includes crystalline silicon. The first insulating layer includes a region overlapping with the first transistor with the second insulating layer therebetween. The second insulating layer includes a region overlapping with the second transistor with the first insulating layer therebetween. The second insulating layer has higher film density than the first insulating layer.
    Type: Application
    Filed: November 7, 2023
    Publication date: February 29, 2024
    Applicant: Semiconductor Energy Laboratory Co., Lid.
    Inventors: Yukinori Shima, Kenichi OKAZAKI
  • Patent number: 11899328
    Abstract: The display device includes a first substrate provided with a driver circuit region that is located outside and adjacent to a pixel region and includes at least one second transistor which supplies a signal to the first transistor in each of the pixels in the pixel region, a second substrate facing the first substrate, a liquid crystal layer between the first substrate and the second substrate, a first interlayer insulating film including an inorganic insulating material over the first transistor and the second transistor, a second interlayer insulating film including an organic insulating material over the first interlayer insulating film, and a third interlayer insulating film including an inorganic insulating material over the second interlayer insulating film. The third interlayer insulating film is provided in part of an upper region of the pixel region, and has an edge portion on an inner side than the driver circuit region.
    Type: Grant
    Filed: November 28, 2022
    Date of Patent: February 13, 2024
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yasuharu Hosaka, Yukinori Shima, Kenichi Okazaki, Shunpei Yamazaki
  • Publication number: 20240038777
    Abstract: To provide a semiconductor device that occupies a small area. The semiconductor device includes a first conductive layer, first to fifth insulating layers, and a second conductive layer that are stacked in this order and further includes a semiconductor layer, a third conductive layer, and a sixth insulating layer. The semiconductor layer is in contact with the top surface of the first conductive layer, the side surfaces of the first to fifth insulating layers, and the second conductive layer. The sixth insulating layer is over the semiconductor layer. The third conductive layer is over the sixth insulating layer and overlaps with the semiconductor layer with the sixth insulating layer between the third conductive layer and the semiconductor layer. The first insulating layer includes a region having a higher hydrogen content than the second insulating layer. The fifth insulating layer includes a region having a higher hydrogen content than the fourth insulating layer.
    Type: Application
    Filed: July 20, 2023
    Publication date: February 1, 2024
    Inventors: Masakatsu OHNO, Masataka NAKADA, Yukinori SHIMA, Masayoshi DOBASHI, Junichi KOEZUKA, Masami JINTYOU
  • Patent number: 11888071
    Abstract: To reduce defects in an oxide semiconductor film in a semiconductor device. To improve electrical characteristics of and reliability in the semiconductor device including an oxide semiconductor film. A method for manufacturing a semiconductor device includes the steps of forming a gate electrode and a gate insulating film over a substrate, forming an oxide semiconductor film over the gate insulating film, forming a pair of electrodes over the oxide semiconductor film, forming a first oxide insulating film over the oxide semiconductor film and the pair of electrodes by a plasma CVD method in which a film formation temperature is 280° C. or higher and 400° C. or lower, forming a second oxide insulating film over the first oxide insulating film, and performing heat treatment at a temperature of 150° C. to 400° C. inclusive, preferably 300° C. to 400° C. inclusive, further preferably 320° C. to 370° C. inclusive.
    Type: Grant
    Filed: June 8, 2022
    Date of Patent: January 30, 2024
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junichi Koezuka, Yukinori Shima, Suzunosuke Hiraishi, Kenichi Okazaki
  • Patent number: 11876126
    Abstract: Provided is a method for manufacturing a semiconductor device whose electric characteristics are prevented from being varied and whose reliability is improved. In the method, an insulating film is formed over an oxide semiconductor film, a buffer film is formed over the insulating film, oxygen is added to the buffer film and the insulating film, a conductive film is formed over the buffer film to which oxygen is added, and an impurity element is added to the oxide semiconductor film using the conductive film as a mask. An insulating film containing hydrogen and overlapping with the oxide semiconductor film may be formed after the impurity element is added to the oxide semiconductor film.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: January 16, 2024
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masami Jintyou, Yukinori Shima
  • Publication number: 20230420522
    Abstract: A metal oxide film includes indium, M, (M is Al, Ga, Y, or Sn), and zinc and includes a region where a peak having a diffraction intensity derived from a crystal structure is observed by X-ray diffraction in the direction perpendicular to the film surface. Moreover, a plurality of crystal parts is observed in a transmission electron microscope image in the direction perpendicular to the film surface. The proportion of a region other than the crystal parts is higher than or equal to 20% and lower than or equal to 60%.
    Type: Application
    Filed: September 8, 2023
    Publication date: December 28, 2023
    Applicant: Semiconductor Energy Laboratory Co., Lid.
    Inventors: Yasuharu Hosaka, Toshimitsu OBONAI, Yukinori SHIMA, Masami JINTYOU, Daisuke KUROSAKI, Takashi HAMOCHI, Junichi KOEZUKA, Kenichi OKAZAKI, Shunpei YAMAZAKI
  • Publication number: 20230420571
    Abstract: A semiconductor device with favorable electrical characteristics is provided. A highly reliable semiconductor device is provided. A semiconductor device with stable electrical characteristics is provided. The semiconductor device includes a first insulating layer, a second insulating layer, a semiconductor layer, and a first conductive layer. The semiconductor layer, the second insulating layer, and the first conductive layer are stacked in this order over the first insulating layer. The first insulating layer has a stacked-layer structure in which a first insulating film, a second insulating film, and a third insulating film are stacked in this order. The second insulating layer includes an oxide. The third insulating film includes a part in contact with the semiconductor layer. The first insulating film includes silicon and nitrogen. The second insulating film includes silicon, nitrogen, and oxygen. The third insulating film includes silicon and oxygen. The semiconductor layer includes indium and oxygen.
    Type: Application
    Filed: September 13, 2023
    Publication date: December 28, 2023
    Inventors: Yukinori SHIMA, Masakatsu OHNO, Takumi SHIGENOBU
  • Patent number: 11852937
    Abstract: The manufacturing yield of a display device is improved. The resistance of a display device to ESD is increased. The display device includes a substrate, a display portion, a connection terminal, a first wiring, and a second wiring. The first wiring is electrically connected to the connection terminal and includes a portion positioned between the connection terminal and the display portion. The second wiring is electrically connected to the connection terminal, is positioned between the connection terminal and an end portion of the substrate, and includes a portion in which a side surface is exposed at an end portion of the substrate. The display portion includes a transistor. The transistor includes a semiconductor layer, a gate insulating layer, and a gate electrode. The semiconductor layer and the second wiring include a metal oxide.
    Type: Grant
    Filed: July 13, 2022
    Date of Patent: December 26, 2023
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kenichi Okazaki, Yukinori Shima, Daisuke Kurosaki, Masataka Nakada
  • Publication number: 20230411526
    Abstract: A semiconductor device comprising an oxide semiconductor film, a gate electrode, a first insulating film, a source electrode, a drain electrode, and a second insulating film is provided. Each of a top surface of the gate electrode, a top surface of the source electrode, and a top surface of the drain electrode comprises a region in contact with the second insulating film. A top surface of the first insulating film comprises a region in contact with the gate electrode and a region in contact with the second insulating film and overlapping with the oxide semiconductor film in a cross-sectional view of the oxide semiconductor film. The oxide semiconductor film comprises a region in contact with the first insulating film and a region in contact with the second insulating film and adjacent to the region in contact with the first insulating film in the cross-sectional view.
    Type: Application
    Filed: August 31, 2023
    Publication date: December 21, 2023
    Inventors: Shunpei YAMAZAKI, Junichi KOEZUKA, Masami JINTYOU, Yukinori SHIMA, Takashi HAMOCHI, Yasutaka NAKAZAWA
  • Patent number: 11843004
    Abstract: The stability of a step of processing a wiring formed using copper, aluminum, gold, silver, molybdenum, or the like is increased. Moreover, the concentration of impurities in a semiconductor film is reduced. Moreover, the electrical characteristics of a semiconductor device are improved. In a transistor including an oxide semiconductor film, an oxide film in contact with the oxide semiconductor film, and a pair of conductive films being in contact with the oxide film and including copper, aluminum, gold, silver, molybdenum, or the like, the oxide film has a plurality of crystal parts and has c-axis alignment in the crystal parts, and the c-axes are aligned in a direction parallel to a normal vector of a top surface of the oxide semiconductor film or the oxide film.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: December 12, 2023
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Junichi Koezuka, Yasutaka Nakazawa, Yukinori Shima, Masami Jintyou, Masayuki Sakakura, Motoki Nakashima